Orientation dependence of cyclic stability of superelasticity of Ti50.2Ni49.8 alloy single crystals under compression

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The effect of marforming (low-temperature compression deformation of В19′-martensite at 203 K and subsequent annealing at 713 K for 0.5 h) on superelasticity (SE), temperature range of SE, and cyclic stability of superelastic behavior 323 K are studied on [001]В2 and [112]В2 single crystals of the Ti50.2Ni49.8 (at %) alloy under compression. It is shown that marforming leads to an increase in the offset yield strength σ0.1 of the high-temperature В2-phase and to the development of SE, which was not observed in quenched crystals. The orientation dependence of the SE temperature range and the cyclic stability of superelastic behavior, which is determined by the orientation dependence of the σ0.1 stresses of the В2-phase, is established. The maximum SE temperature range is 87 K, and the cyclic stability of superelastic behavior at a temperature of 323 K is sound in the [001]В2 orientation with a high σ0.1 stress level of the В2-phase.

Sobre autores

I. Kireeva

Siberian Physical-Technical Institute, National Research Tomsk State University

Autor responsável pela correspondência
Email: kireeva@spti.tsu.ru
Rússia, Tomsk, 634050

Yu. Chumlyakov

Siberian Physical-Technical Institute, National Research Tomsk State University

Email: kireeva@spti.tsu.ru
Rússia, Tomsk, 634050

A. Vyrodova

Siberian Physical-Technical Institute, National Research Tomsk State University

Email: kireeva@spti.tsu.ru
Rússia, Tomsk, 634050

A. Saraeva

Siberian Physical-Technical Institute, National Research Tomsk State University

Email: kireeva@spti.tsu.ru
Rússia, Tomsk, 634050

Z. Pobedennaya

Siberian Physical-Technical Institute, National Research Tomsk State University

Email: kireeva@spti.tsu.ru
Rússia, Tomsk, 634050

E. Marchenko

Siberian Physical-Technical Institute, National Research Tomsk State University

Email: kireeva@spti.tsu.ru
Rússia, Tomsk, 634050

Bibliografia

  1. Otsuka K., Wayman C.M. Shape Memory Materials.Cambridge: Cambridge University Press, 1998. 284 p.
  2. Otsuka K., Ren X. Physical metallurgy of Ti–Ni–based shape memory alloys // Prog. In Mater. Sci. 2005. V. 50. № 5. P. 135–678.
  3. Пушин В.Г., Кондратьев В.В., Хачин В.Н. Предпереходные явления и мартенитные превращения. Екатеринбург, УрО РАН, 1998. 368 с.
  4. Moghaddam N.S., Saedi S., Amerinatanzi A., Hinojos A., Ramazani H., Kundin J., Mills M.J., Karaca H., Elahinia M. Achieving superelasticity in additively manufactured NiTi in compression without post-process heat treatment // Sci. Reports. 2019. V. 9. P. 41.
  5. Choi W.S., Pang E.L., Ko W.S., Jun H., Bong H.J., Kirchlechner C., Raabe D., Choi P.P. Orientation-dependent plastic deformation mechanisms and competition with stress-induced phase transformation in microscale NiTi // Acta Mater. 2021. V. 208. P. 116731.
  6. Elahina M., Moghaddam N.S., Andani M.T., Amerinatanzi A., Bimber B., Hamilton R.F. Fabrication of TiNi throuch additive manufacturing: A review // Prog. In Mater. Sci. 2016. V. 83. P. 630–663.
  7. Yang Y., Sun J., Ding X. Superelasticity induced a strain gradient // Shap. Mem. Superelasticity. 2023. V. 9. P. 231–239.
  8. Гирсова С.Л., Полетика Т.М., Биттер С.М., Лотков А.И., Кудряшов А.Н. Мультистадийность мартенситных превращений в нанокристаллическом сплаве Ti–50.9 ат.% Ni // Изв. Вузов. Физика. 2021. Т. 64. № 10. С. 124–130.
  9. Деркач М.А., Шереметьев В.А., Коротицкий А.В., Прокошкин С.Д. Исследование низкотемпературного термомеханического поведения сверхупругого сплава Ti–18Zr–15Nb в различных температурно-скоростных условиях // ФММ. 2023. Т. 124. № 9. С. 873–883.
  10. Куранова Н.Н., Макаров В.В., Пушин В.Г., Попов Н.А. Структура и механические свойства стареющего сплава Ti49Ni51 с эффектами памяти формы после механо-термической обработки // ФММ. 2023. Т. 124. № 2. С. 239–247.
  11. Chumlyakov Y.I., Kireeva I.V., Pobedennaya Z.V., Yakovleva L.P., Vyrodova A.V., Kuksgauzen I.V. Orientation dependence of shape memory effect and superelasticity in (TiZrHf)50Ni25Co10Cu15 high-entropy alloy single crystals // Shap. Mem. Superelasticity. 2023. V. 9. P. 300–312.
  12. Hornbogen E., Mertinger V., Wurzel D. Microstructure and tensile properties of tow binary NiTi-alloys, Scripta Mater // Scripta Mater. 2001. V. 44. № 1. P. 171–178.
  13. Chumlyakov Y.I., Kireeva I.V., Vyrodova A.V., Saraeva A.A., Pobedennaya Z.V. Effect of marforming on superelasticity and shape memory effect of [001]-oriented Ni50.3Ti49.7 alloy single crystals under compression // J. Alloys and Compd. 2021. V. 896. P. 162841.
  14. Sehitoglu H., Hamilton R., Canadinc D., Zhang X.Y., Gall K., Karaman I., Chumlyakov Y., Maier H.J. Detwinning in NiTi alloys // Metall. And Mat. Trans. A. 2003. V. 34. № 5. P. 6–13.
  15. Chumlyakov Yu.I., Kireeva I.V., Saraeva A.A., Pobedennaya Z.V., Vyrodova A.V. Effect of the surface oxide layer on shape memory effect and superelasticity of [011]-oriented Ti–50.1Ni single crystals // Metals. 2022. V. 12. Paper 1932.
  16. Hornbogen E. The effect of variables on martensitic transformation temperatures // Acta Metall. 1985. V. 33. № 4. P. 595–601.
  17. Carroll M.C., Somsen Ch., Eggeler G. Multiple-step martensite transformations in Ni-rich Ni–Ti shape memory alloys // Scripta Mater. 2004. V. 50. P. 187–192.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML