Simulation of spectral observations of an eruptive prominence

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The paper presents the results of an analysis of observations of an eruptive prominence on the MFS and HSFA2 spectrographs of the Ondřejov Observatory (Astronomical Institute, Czech Republic) in the lines of hydrogen, helium and calcium. After processing the spectra, the integral radiation fluxes in the lines were determined and a theoretical calculation of the physical parameters of the plasma was carried out using a model in the absence of local thermodynamic equilibrium. A comparison of the observed and calculated values showed that the observed radiation fluxes in the lines can be explained in a model of stationary gas radiation taking into account the opacity in the spectral lines. To calculate theoretical fluxes, in some cases it was necessary to introduce radiation from several layers with different temperatures and heights. The calculated radiation fluxes agree with the observed ones with an accuracy of 10%. As a result of the simulation, the main parameters of the prominence plasma were obtained: temperature, concentration, etc. The values of radiation fluxes in the spectral lines indicate the inhomogeneity of the emitting gas, and there may be regions next to each other whose temperatures differ by an order of magnitude.

全文:

受限制的访问

作者简介

Yu. Kupryakov

ASCR; Moscow State University

Email: jurij.kupriakov@asu.cas.cz

Astronomical Institute, Sternberg Astronomical Institute

捷克共和国, Ondřejov; Russia, Moscow

K. Bychkov

Moscow State University

Email: bychkov@sai.msu.ru

Sternberg Astronomical Institute

俄罗斯联邦, Moscow

O. Belova

Moscow State University

Email: whitecanvas05122010@mail.ru

Sternberg Astronomical Institute

俄罗斯联邦, Moscow

A. Gorshkov

Moscow State University

Email: gorshkov@sai.msu.ru

Sternberg Astronomical Institute

俄罗斯联邦, Moscow

P. Kotrč

ASCR

编辑信件的主要联系方式.
Email: pavel.kotrc@asu.cas.cz

Astronomical Institute

捷克共和国, Ondřejov

参考

  1. Белова О.М., Бычков К.В. Устойчивость нестационарного охлаждения чисто водородного газа относительно числа учитываемых дискретных уровней // Астрофизика. Т. 61. № 1. C. 119–130. 2018.
  2. Биберман Л.М. К теории диффузии резонансного излучения // ЖЭТФ. Т. 17. С. 416. 1947.
  3. Биберман Л.М., Воробьёв В.С., Якубов И.Т. Кинетика неравновесной низкотемпературной плазмы. М.: Наука, 378 с. 1982.
  4. Вайнштейн Л.А., Собельман И.И., Юков Е.А. Сечения возбуждения атомов и ионов электронами. М.: Наука, 142 с. 1973.
  5. Anzer U., Heinzel P. Prominence Parameters Derived from Magnetic-Field Measurements and NLTE Diagnostics // Sol. Phys. V. 179. № 1. P. 75–87. 1998. https://doi.org/10.1023/A:1005000616138
  6. Holstein T. Imprisonment of resonance radiation in gases // Phys. Rev. V. 72. P. 1212—1233. 1947. https://doi.org/10.1103/PhysRev.72.1212
  7. Holstein T. Imprisonment of resonance radiation in gases. II // Phys. Rev. V. 83. P. 1159—1168. 1951. https://doi.org/10.1103/PhysRev.83.1159
  8. Johnson L.C. Approximations for collisional and radiative transition rates in atomic hydrogen // ApJ. V. 174. P. 227—236. 1972. https://doi.org/10.1086/151486
  9. Kotrč P., Bárta M., Schwartz P., Kupryakov Y.A., Kashapova L.K., Karlický M. Modeling of H-alpha Eruptive Events Observed at the Solar Limb // Sol. Phys. V. 284. № 2. P. 447—466. 2013. https://doi.org/10.1007/s11207-012-0167-6
  10. Labrosse N., Heinzel P., Vial J.-C., et al. Physics of Solar Prominences: I-Spectral Diagnostics and Non-LTE Modelling // Space Sci. Rev. V. 151. P. 243—332. 2010. https://doi.org/10.1007/s11214-010-9630-6
  11. Melendez M., Bautista M.A., Badnell N.R. Atomic data from the IRON project LXIV. Radiative transition rates and collision strengths for Ca II // A&A. V. 469. P. 1203—1209. 2007. https://doi.org/10.1051/0004-6361:20077262
  12. Schwartz P., Balthasar H., Kuckein C., et al. NLTE modeling of a small active region filament observed with the VTT // Astron. Nachr. V. 337. № 10. P. 1045—1049. 2016. https://doi.org/10.1002/asna.201612431
  13. Schwartz P., Gunár S., Jenkins J.M., et al. 2D non-LTE modelling of a filament observed in the Hα line with the DST/IBIS spectropolarimeter // A&A. V. 631. P. A146 (12P). 2019.
  14. Seaton M.J. The spectrum of the solar corona // Planetary and Space Science. V. 12. № 1. P. 55—74. 1964.
  15. Vial J.-C., Engvold O. (eds) Solar Prominences. Astrophys. Space Sci. Lib. V. 415. 498 p. 2018. https://doi.org/10.1007/978-3-319-10416-4

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Hα spectrum at 13:21:11 UT (left). The numbers correspond to photometric sections. Below is the speed scale. In the center is the image on the slit in the Hα line. On the right is an image of SDO 304 Å with the spectrograph slit position and Doppler velocity components marked.

下载 (176KB)
3. Fig. 2. Filtergram and spectrum in the Hα line at 13:27:40 UT.

下载 (115KB)
4. Fig. 3. Radiation flux (shaded area) in the Hα line at 13:27:40 UT.

下载 (170KB)

版权所有 © Russian Academy of Sciences, 2024