Comparative IR study of tetrafluoroethylene telomeres exposed to gamma irradiation in air and in vacuum

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

Five samples of tetrafluoroethylene (TFE) telomers with different monomer concentrations (Сi) in carbon tetrachloride were obtained by radiation telomerization. It was found that the IR spectra of the obtained telomers differ from the IR spectrum of polytetrafluoroethylene mainly by the presence of an absorption band of terminal CCl3 groups at 850 cm–1, the intensity of which (I850) increases with decreasing Сi. It was shown that the dependence of I850 on Сi is well described by a fractional rational function. Then, dry telomers were treated with 60Co γ-rays with a total dose of 1020 kGy both in air and vacuum. A detailed analysis of the IR spectra of the irradiated samples showed that in vacuum, transformation or detachment of terminal CCl3 groups occurs. When telomeres are irradiated in air, in addition to this, the formation of carboxyl (-COOH) groups is observed. If the stability of the telomere is associated with the formation of -COOH groups, then for the studied series of telomeres, the stability increases with the growth of Сi.

Texto integral

Acesso é fechado

Sobre autores

Yu. Shul’ga

Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry of the RAS

Email: kga@icp.ac.ru
Rússia, Chernogolovka

G. Kichigina

Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry of the RAS

Autor responsável pela correspondência
Email: kga@icp.ac.ru
Rússia, Chernogolovka

P. Kushch

Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry of the RAS

Email: kga@icp.ac.ru
Rússia, Chernogolovka

D. Kiryukhin

Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry of the RAS

Email: kga@icp.ac.ru
Rússia, Chernogolovka

Bibliografia

  1. Шульга Ю.М., Кичигина Г.А., Кущ П.П., Кирюхин Д.П. // Химия высоких энергий. 2025. Т. 59. № 4. С. 198.
  2. Liang C.Y., Krimm S. //J. Chem. Phys. 1956. V. 25. № 3. P. 563.
  3. Blanchet G.B., Ismat Shah S. // Appl. Phys. Lett. 1993. V. 62. P. 1026.
  4. Norton M.G., Jiang W., Dickinson J.T., Hipps K.W. // Appl. Surf. Sci. 1996. V. 96–98. P. 617.
  5. Игнатьева Л.Н., Цветников А.К., Лифшиц А.Н., Салдин В.И., Бузник В.М. // Ж. структ. химии. 2002. Т. 43. № 1. С. 64.
  6. Kwong H.Y., Wong M.H., Wong Y.W., Wong K.H. // Appl. Surf. Sci. 2007. V. 253. P. 8841.
  7. Chandr V., Manoharan S.S. // Synth. React. Inorg. Met. Nano Metal Chem. 2008. V. 38. P. 288.
  8. Wang S., Li J., Suo J., Luo T. // Appl. Surf. Sci. 2010. V. 256. P. 2293.
  9. Henda R., Wilson G., Gray-Munro J., Alshekhli O., McDonald A.M. // Thin Solid Films. 2012. V. 520. P.1885.
  10. Ignatieva L.N., Mashchenko V.A., Gorbenko O.M. et al. // Russ. J. Phys. Chem. B. 2023. V. 17. P. 1330.
  11. Кирюхин Д.П., Кичигина Г.А., Кущ П.П., Бузник В.М. // Низкомолекулярные фторполимерные материалы. Монография “Фторполимерные материалы” (глава 4). Томск: Изд-во НТЛ, 2017. 600 с.
  12. Кичигина Г.А., Кущ П.П., Колесникова А.М., Кирюхин Д.П. // Химия высоких энергий. 2011. Т. 45. № 5. С. 431.
  13. Кирюхин Д.П., Кичигина Г.А., Бузник В.М. // Высокомолек. соед. Серия А. 2013. Т. 55. № 11. С. 1321.
  14. Кирюхин Д.П., Кичигина Г.А., Кущ П.П., Василец В.Н., Кабачков Е.Н., Шульга Ю.М. // Химия высоких энергий. 2022. Т. 56. № 3. С. 208.
  15. Kichigina G.A., Kushch P.P., Shulga Y.M., Kabachkov E.N., Kiryukhin D.P. // High Energy Chemistry. 2024. V. 58. № 5. P. 549.
  16. Masetti G., Cabassi F., Morelli G., Zerbi G. // Macromolecules. 1973. V. 6. P. 700.
  17. Biswas S., Vijayan K.// Wear. 1992. V. 158. P. 193.
  18. Quarti C., Milani A., Castiglioni C. // J. Phys. Chem. B. 2013. V. 117. P. 706.
  19. Wang R., Xu G., He Y. // e-Polymers 2017. V. 17. P. 215.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. IR spectra of the studied telomers before irradiation. The initial concentration of TFE (Ci) in mass % is indicated in the figure.

Baixar (415KB)
3. Fig. 2. Dependence of the intensity of the absorption band at 850 cm–1 on the concentration of TFE Ci. Black circles are experimental points, the solid red line is a description of the experimental data using formula (2).

Baixar (324KB)
4. Fig. 3. Fragments of the IR spectra of sample TR6 before irradiation and after irradiation in vacuum and in air.

Baixar (571KB)
5. Fig. 4. Intensities of the absorption band at 850 cm–1 for the studied samples before irradiation (1) and after irradiation in vacuum (2) and in air (3).

Baixar (341KB)
6. Fig. 5. Intensities of the absorption band at 1775 cm–1 for the studied samples after their irradiation in air.

Baixar (286KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025