Модификаторы поверхностей для снижения бактериальной обсемененности в медицине и пищевой промышленности
- Авторы: Чередниченко Ю.В.1, Ишмухаметов И.Р.1, Фахруллина Г.И.1
-
Учреждения:
- Казанский (Приволжский) федеральный университет
- Выпуск: Том 87, № 1 (2025)
- Страницы: 59-75
- Раздел: Статьи
- Статья получена: 28.05.2025
- Статья опубликована: 24.01.2025
- URL: https://permmedjournal.ru/0023-2912/article/view/680865
- DOI: https://doi.org/10.31857/S0023291225010075
- EDN: https://elibrary.ru/USCCCX
- ID: 680865
Цитировать
Аннотация
Антибактериальные покрытия находят применение в пищевой и текстильной промышленности, в строительной отрасли, биотехнологии и медицине. В обзоре рассмотрены основные виды покрытий, которые предотвращают обрастание биомакромолекулами и микроорганизмами: антиадгезивные, контактные, на основе релиза, многофункциональные и интеллектуальные («умные») покрытия. Для каждого вида покрытия описаны наиболее актуальные и эффективные действующие вещества и механизм их действия. Несмотря на широкое распространение антиадгезионных поверхностей и покрытий контактного типа, они имеют множество недостатков, которые ограничивают сферы их применения и снижают активность и долговечность. Многочисленные исследования показывают, что многофункциональные и интеллектуальные покрытия имеют высокий потенциал для практического применения и дальнейших исследований по их модификации для получения универсальных и экономически выгодных покрытий. Основной проблемой практического применения таких поверхностей является несовершенство методов оценки стабильности и антибактериальных свойств покрытия в лабораторных условиях.
Полный текст

Об авторах
Ю. В. Чередниченко
Казанский (Приволжский) федеральный университет
Автор, ответственный за переписку.
Email: serova.yuliya87@gmail.com
Институт фундаментальной медицины и биологии
Россия, 420008, РТ, Казань, ул. Кремлевская, д. 18И. Р. Ишмухаметов
Казанский (Приволжский) федеральный университет
Email: serova.yuliya87@gmail.com
Институт фундаментальной медицины и биологии
Россия, 420008, РТ, Казань, ул. Кремлевская, д. 18Г. И. Фахруллина
Казанский (Приволжский) федеральный университет
Email: serova.yuliya87@gmail.com
Институт фундаментальной медицины и биологии
Россия, 420008, РТ, Казань, ул. Кремлевская, д. 18Список литературы
- Jiang C.C., Cao Y.K., Xiao G.Y. et al. A review on the application of inorganic nanoparticles in chemical surface coatings on metallic substrates // RSC Advances. 2017. V. 7. № 13. P. 7531–7539. https://doi.org/10.1039/C6RA25841G
- Kausar A. Polymer coating technology for high performance applications: Fundamentals and advances // Journal of Macromolecular Science, Part A. 2018. V. 55. № 5. P. 440–448. https://doi.org/10.1080/10601325.2018.1453266
- Makvandi P., Wang C.Y., Zare E.N. et al. Metal-based nanomaterials in biomedical applications: Antimicrobial activity and cytotoxicity aspects // Advanced Functional Materials. 2020. V. 30. № 22. P. 1910021. https://doi.org/10.1002/adfm.201910021
- Erkoc P., Ulucan-Karnak F. Nanotechnology-based antimicrobial and antiviral surface coating strategies // Prosthesis. 2021. V. 3. № 1. P. 25–52. https://doi.org/10.3390/prosthesis3010005
- Wei T., Yu Q., Chen H. Responsive and synergistic antibacterial coatings: Fighting against bacteria in a smart and effective way // Advanced Healthcare Materials. 2019. V. 8. № 3. P. 18001381. https://doi.org/10.1002/adhm.201801381
- DeFlorio W., Liu S., White A.R. et al. Recent developments in antimicrobial and antifouling coatings to reduce or prevent contamination and cross‐contamination of food contact surfaces by bacteria // Comprehensive Reviews in Food Science and Food Safety. 2021. V. 20. № 3. P. 3093–3134. https://doi.org/10.1111/1541-4337.12750
- Wang L., Guo X., Zhang H. et al. Recent advances in superhydrophobic and antibacterial coatings for biomedical materials // Coatings. 2022. V. 12. № 10. P. 1469. https://doi.org/10.3390/coatings12101469
- Rezić I., Meštrović E. Characterization of nanoparticles in antimicrobial coatings for medical applications – A review // Coatings. 2023. V. 13. № 11. P. 1830. https://doi.org/10.3390/coatings13111830
- Blair J.M., Webber M.A., Baylay A.J. et al. Molecular mechanisms of antibiotic resistance // Nature reviews microbiology. 2015. V. 13. № 1. P. 42–51. https://doi.org/10.1038/nrmicro3380
- Давидович Н.В., Кукалевская Н.Н., Башилова Е.Н., Бажукова Т.А. Основные принципы эволюции антибиотикорезистентности у бактерий (обзор литературы) // Клиническая лабораторная диагностика. 2020. Т. 65. № 6. С. 387–393. http://dx.doi.org/10.18821/0869-2084-2020-65-6-387-393
- Urban-Chmiel R., Marek A., Stępień-Pyśniak D. et al. Antibiotic resistance in bacteria – A review // Antibiotics. 2022. V. 11. № 8. P. 1079. https://doi.org/10.3390/antibiotics11081079
- Cherednichenko Y., Batasheva S., Akhatova F. et al. Antibiofilm activity of silver nanoparticles-halloysite nanocomposite in Serratia marcescens // Journal of Nanoparticle Research. 2024. V. 26. № 4. P. 71. https://doi.org/10.1007/s11051-024-05971-y
- Stewart P.S., Costerton J.W. Antibiotic resistance of bacteria in biofilms // The lancet. 2001. V. 358. № 9276. P. 135–138. https://doi.org/10.1016/S0140-6736(01)05321-1
- Чеботарь И.В., Маянский А.Н., Кончакова Е.Д. и др. Антибиотикорезистентность биоплёночных бактерий // Клиническая микробиология и антимикробная химиотерапия. 2012. Т. 14. №. 1. С. 51–58.
- De Silva R.T., Pasbakhsh P., Lee S.M., Kit A.Y. ZnO deposited / Encapsulated halloysite–poly (lactic acid) (PLA) nanocomposites for high performance packaging films with improved mechanical and antimicrobial properties // Applied Clay Science. 2015. V. 111. P. 10–20. https://doi.org/10.1016/j.clay.2015.03.024
- Karthikeyan P., Mitu L., Pandian K. et al. Electrochemical deposition of a Zn-HNT / P (EDOT-co-EDOP) nanocomposite on LN SS for anti-bacterial and anti-corrosive applications // New Journal of Chemistry. 2017. V. 41. № 12. P. 4758–4762. https://doi.org/10.1039/C6NJ03927H
- Stavitskaya A., Batasheva S., Vinokurov V. et al. Antimicrobial applications of clay nanotube-based composites // Nanomaterials. 2019. V. 9. № 5. P. 708. https://doi.org/10.3390/nano9050708
- Mauriello G. Chapter 11 - Control of microbial activity using antimicrobial packaging // Barros-Velazquez J. (ed). Antimicrobial Food Packaging. London, San Diego, USA: Academic Press. 2016. P. 141–152. https://doi.org/10.1016/B978-0-12-800723-5.00011-5
- Valencia-Chamorro S.A., Palou L., Del Río M.A., Pérez-Gago M.B. Antimicrobial edible films and coatings for fresh and minimally processed fruits and vegetables: A review // Critical Reviews in Food Science and Nutrition. 2011. V. 51. № 9. P. 872–900. https://doi.org/10.1080/10408398.2010.485705
- Malhotra B., Keshwani A., Kharkwal H. Antimicrobial food packaging: Potential and pitfalls // Frontiers in microbiology. 2015. V. 6. P. 611. https://doi.org/10.3389/fmicb.2015.00611
- Fu Y., Dudley E.G. Antimicrobial-coated films as food packaging: A review // Comprehensive Reviews in Food Science and Food Safety. 2021. V. 20. № 4. P.3404−3437. https://doi.org/10.1111/1541-4337.12769
- Pemmada R., Shrivastava A., Dash M. et al. Science-based strategies of antibacterial coatings with bactericidal properties for biomedical and healthcare settings // Current Opinion in Biomedical Engineering. 2023. V. 25. P. 100442. https://doi.org/10.1016/j.cobme.2022.100442
- Paladini F., Pollini M., Sannino A., Ambrosio L. Metal-based antibacterial substrates for biomedical applications // Biomacromolecules. 2015. V. 16. № 7. P. 1873–1885. https://doi.org/10.1021/acs.biomac.5b00773
- Jose A., Gizdavic-Nikolaidis M., Swift S. Antimicrobial coatings: reviewing options for healthcare applications // Applied Microbiology. 2023. V. 3. № 1. P. 145–174. https://doi.org/10.3390/applmicrobiol3010012
- Adlhart C., Verran J., Azevedo N.F. et al. Surface modifications for antimicrobial effects in the healthcare setting: A critical overview // Journal of Hospital Infection. 2018. V. 99. № 3. P. 239–249. https://doi.org/10.1016/j.jhin.2018.01.018
- Simchi A., Tamjid E., Pishbin F., Boccaccini A.R. Recent progress in inorganic and composite coatings with bactericidal capability for orthopaedic applications // Nanomedicine: Nanotechnology, Biology and Medicine. 2011. V. 7. № 1. P. 22–39. https://doi.org/10.1016/j.nano.2010.10.005
- Chen X., Zhou J., Qian Y., Zhao L. Antibacterial coatings on orthopedic implants // Materials Today Bio. 2023. V. 19. P. 100586. https://doi.org/10.1016/j.mtbio.2023.100586
- Andra S., Balu S.K., Jeevanandam J., Muthalagu M. Emerging nanomaterials for antibacterial textile fabrication // Naunyn-Schmiedeberg’s Archives of Pharmacology. 2021. V. 394. P. 1355–1382. https://doi.org/10.1007/s00210-021-02064-8
- Dastjerdi R., Montazer M. A review on the application of inorganic nano-structured materials in the modification of textiles: Focus on anti-microbial properties // Colloids and Surfaces B: Biointerfaces. 2010. V. 79. № 1. P. 5–18. https://doi.org/10.1016/j.colsurfb.2010.03.029
- Aguda O.N., Lateef A. Recent advances in functionalization of nanotextiles: A strategy to combat harmful microorganisms and emerging pathogens in the 21st century // Heliyon. 2022. V. 8. №. 6. P. e09761. https://doi.org/10.1016/j.heliyon.2022.e09761
- Hochmannova L., Vytrasova J. Photocatalytic and antimicrobial effects of interior paints // Progress in Organic Coatings. 2010. V. 67. № 1. P. 1–5. https://doi.org/10.1016/j.porgcoat.2009.09.016
- Kocer H. B., Cerkez I., Worley S.D. et al. N-halamine copolymers for use in antimicrobial paints // ACS Applied Materials & Interfaces. 2011. V. 3. № 8. P. 3189–3194. https://doi.org/10.1021/am200684u
- Kirthika S.K., Goel G., Matthews A., Goel S. Review of the untapped potentials of antimicrobial materials in the construction sector // Progress in Materials Science. 2023. V. 133. P. 101065. https://doi.org/10.1016/j.pmatsci.2022.101065
- Gupta S., Puttaiahgowda Y.M., Nagaraja A., Jalageri M.D. Antimicrobial polymeric paints: An up-to-date review // Polymers for Advanced Technologies. 2021. V. 32. № 12. P. 4642–4662. https://doi.org/10.1002/pat.5485
- Tornero A.F., Blasco M.G., Azqueta M.C. et al. Antimicrobial ecological waterborne paint based on novel hybrid nanoparticles of zinc oxide partially coated with silver // Progress in Organic Coatings. 2018. V. 121. P. 130–141. https://doi.org/10.1016/j.porgcoat.2018.04.018
- Bakina O., Pikuschak E., Prokopchuk A. et al. Enhanced Biocidal Activity of Heterophase Zinc Oxide/Silver Nanoparticles Contained within Painted Surfaces // Coatings. 2024. V. 14. № 2. P. 241. https://doi.org/10.3390/coatings14020241
- Vasilev K., Cook J., Griesser H.J. Antibacterial surfaces for biomedical devices // Expert Review of Medical Devices. 2009. V. 6. № 5. P. 553–567. https://doi.org/10.1586/erd.09.36
- Cavallaro A., Taheri S., Vasilev K. Responsive and “smart” antibacterial surfaces: Common approaches and new developments // Biointerphases. 2014. V. 9. № 2. P. 029005. https://doi.org/10.1116/1.4866697
- Godoy-Gallardo M., Wang Z., Shen Y. et al. Antibacterial coatings on titanium surfaces: A comparison study between in vitro single-species and multispecies biofilm // ACS Applied Materials & Interfaces. 2015. V. 7. № 10. P. 5992–6001. https://doi.org/10.1021/acsami.5b00402
- Bharadishettar N., Bhat K.U., Bhat Panemangalore D. Coating technologies for copper based antimicrobial active surfaces: A perspective review // Metals. 2021. V. 11. № 5. P. 711. https://doi.org/10.3390/met11050711
- Ferreira T.P.M., Nepomuceno N.C., Medeiros E.L. et al. Antimicrobial coatings based on poly (dimethyl siloxane) and silver nanoparticles by solution blow spraying // Progress in Organic Coatings. 2019. V. 133. P. 19–26. https://doi.org/10.1016/j.porgcoat.2019.04.032
- Yu K., Lo J. C., Yan M. et al. Anti-adhesive antimicrobial peptide coating prevents catheter associated infection in a mouse urinary infection model // Biomaterials. 2017. V. 116. P. 69–81. https://doi.org/10.1016/j.biomaterials.2016.11.047
- Keum H., Kim J.Y., Yu B. et al. Prevention of bacterial colonization on catheters by a one-step coating process involving an antibiofouling polymer in water // ACS Applied Materials & Interfaces. 2017. V. 9. № 23. P. 19736–19745. https://doi.org/10.1021/acsami.7b06899
- Li X., Li P., Saravanan R. et al. Antimicrobial functionalization of silicone surfaces with engineered short peptides having broad spectrum antimicrobial and salt-resistant properties // Acta Biomaterialia. 2014. V. 10. № 1. P. 258–266. https://doi.org/10.1016/j.actbio.2013.09.009
- Banerjee I., Pangule R.C., Kane R.S. Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms // Advanced Materials. 2011. V. 23. № 6. P. 690–718. https://doi.org/10.1002/adma.201001215
- Raphel J., Holodniy M., Goodman S.B., Heilshorn S.C. Multifunctional coatings to simultaneously promote osseointegration and prevent infection of orthopaedic implants // Biomaterials. 2016. V. 84. P. 301–314. https://doi.org/10.1016/j.biomaterials.2016.01.016
- Liao T.Y., Easton C.D., Thissen H., Tsai, W.B. Aminomalononitrile-assisted multifunctional antibacterial coatings // ACS Biomaterials Science & Engineering. 2020. V. 6. № 6. P. 3349–3360. https://doi.org/10.1021/acsbiomaterials.0c00148
- Li C. B., Wang F., Sun R. Y. et al. A multifunctional coating towards superhydrophobicity, flame retardancy and antibacterial performances // Chemical Engineering Journal. 2022. V. 450. P. 138031. https://doi.org/10.1016/j.cej.2022.138031
- Ni X., Li C., Lei Y. et al. Design of a smart self-healing coating with multiple-responsive superhydrophobicity and its application in antibiofouling and antibacterial abilities // ACS Applied Materials & Interfaces. 2021. V. 13. № 48. P. 57864–57879. https://doi.org/10.1021/acsami.1c15239
- Li X., Wu B., Chen H. et al. Recent developments in smart antibacterial surfaces to inhibit biofilm formation and bacterial infections // Journal of Materials Chemistry B. 2018. V. 6. № 26. P. 4274–4292. https://doi.org/10.1039/C8TB01245H
- Wei T., Yu Q., Zhan W., Chen H. A smart antibacterial surface for the on-demand killing and releasing of bacteria // Advanced Healthcare Materials. 2016. V. 5. № 4. P. 449–456. https://doi.org/10.1002/adhm.201500700
- Olmo JA-D., Ruiz-Rubio L., Pérez-Alvarez L. et al. Antibacterial coatings for improving the performance of biomaterials // Coatings. 2020. V. 10. № 2. P. 139. https://doi.org/10.3390/coatings10020139
- Jose A., Gizdavic-Nikolaidis M., Swift S. Antimicrobial coatings: Reviewing options for healthcare applications // Applied Microbiology. 2023. V. 3. № 1. P. 145–174. https://doi.org/10.3390/applmicrobiol3010012
- Yebra D.M., Kiil S., Dam-Johansen K. Antifouling technology – Past, present and future steps towards efficient and environmentally friendly antifouling coatings // Progress in Organic Coatings. 2004. V. 50. № 2. P. 75–104. https://doi.org/10.1016/j.porgcoat.2003.06.001
- Li L., Hong H., Cao J., Yang Y. Progress in marine antifouling coatings: Current status and prospects //Coatings. 2023. V. 13. № 11. P. 1893. https://doi.org/10.3390/coatings13111893
- Francis W.J. Shipbottom paints. Past, present and future research and development on anticorrosive and antifouling shipbottom compositions // Journal of the American Society for Naval Engineers. 1954. V. 66. № 4. P. 857–866. https://doi.org/10.1111/j.1559-3584.1954.tb05931.x
- Van Kerk G.J.M.D., Luijten J.G.A. Investigations on organo‐tin compounds. III. The biocidal properties of organo‐tin compounds //Journal of Applied Chemistry. 1954. V. 4. № 6. P. 314–319. https://doi.org/10.1002/jctb.5010040607
- Hazziza-Laskar J., Helary G., Sauvet G. Biocidal polymers active by contact. IV. Polyurethanes based on polysiloxanes with pendant primary alcohols and quaternary ammonium groups // Journal of Applied Polymer Science. 1995. V. 58. № 1. P. 77–84. https://doi.org/10.1002/app.1995.070580108
- Jansen B., Kohnen W. Prevention of biofilm formation by polymer modification // Journal of Industrial Microbiology. 1995. V. 15. № 4. P. 391–396. https://doi.org/10.1007/BF01569996
- Lowe A.B., Vamvakaki M., Wassall M.A. et al. Well‐defined sulfobetaine-based statistical copolymers as potential antibioadherent coatings // Journal of Biomedical Materials Research. 2000. V. 52. № 1. P. 88–94. https://doi.org/10.1002/1097-4636(200010)52:1%3C88::AID-JBM11%3E3.0.CO;2-%23
- Mu M., Wang X., Taylor M. et al. Multifunctional coatings for mitigating bacterial fouling and contamination // Colloid and Interface Science Communications. 2023. V. 55. P. 100717. https://doi.org/10.1016/j.colcom.2023.100717
- Cheng G., Xue H., Zhang Z. et al. A switchable biocompatible polymer surface with self-sterilizing and nonfouling capabilities // Angewandte Chemie International Edition. 2008. V. 47. № 46. P. 8831–8834. https://doi.org/10.1002/anie.200803570
- Yu Q., Cho J., Shivapooja P. et al. Nanopatterned smart polymer surfaces for controlled attachment, killing, and release of bacteria // ACS Applied Materials & Interfaces. 2013. V. 5. № 19. P. 9295–9304. https://doi.org/10.1021/am4022279
- Qu Y., Wei T., Zhao J. et al. Regenerable smart antibacterial surfaces: Full removal of killed bacteria via a sequential degradable layer // Journal of Materials Chemistry B. 2018. V. 6. № 23. P. 3946–3955. https://doi.org/10.1039/C8TB01122B
- Liu Y., Zhang D., Tang Y. et al. Machine learning-enabled repurposing and design of antifouling polymer brushes //Chemical Engineering Journal. 2021. V. 420. P. 129872. https://doi.org/10.1016/j.cej.2021.129872
- Kaur R., Liu S. Antibacterial surface design – Contact kill // Progress in Surface Science. 2016. V. 91. № 3. P. 136–153. https://doi.org/10.1016/j.progsurf.2016.09.001
- Nasri N., Rusli A., Teramoto N. et al. Past and current progress in the development of antiviral / Antimicrobial polymer coating towards COVID-19 prevention: A Review // Polymers. 2021. V. 13. № 23. P. 4234. https://doi.org/10.3390/polym13234234
- Pan C., Zhou Z., Yu X. Coatings as the useful drug delivery system for the prevention of implant-related infections // Journal of Orthopaedic Surgery and Research. 2018. V. 13. P. 220. https://doi.org/10.1186/s13018-018-0930-y
- Elena P., Miri K. Formation of contact active antimicrobial surfaces by covalent grafting of quaternary ammonium compounds // Colloids and Surfaces B: Biointerfaces. 2018. V. 169. P. 195–205. https://doi.org/10.1016/j.colsurfb.2018.04.065
- Yu K., Alzahrani A., Khoddami S. et al. Rapid assembly of infection-resistant coatings: Screening and identification of antimicrobial peptides works in cooperation with an antifouling background // ACS Applied Materials & Interfaces. 2021. V. 13. № 31. P. 36784–36799. https://doi.org/10.1021/acsami.1c07515
- Alves D., Olívia Pereira M. Mini-review: Antimicrobial peptides and enzymes as promising candidates to functionalize biomaterial surfaces // Biofouling. 2014. V. 30. № 4. P. 483–499. https://doi.org/10.1080/08927014.2014.889120
- Qu B., Luo Y. A review on the preparation and characterization of chitosan-clay nanocomposite films and coatings for food packaging applications // Carbohydrate Polymer Technologies and Applications. 2021. V. 2. P. 100102. https://doi.org/10.1016/j.carpta.2021.100102
- Li W., Thian E.S., Wang M. et al. Surface design for antibacterial materials: From fundamentals to advanced strategies // Advanced Science. 2021. V. 8. № 19. P. 2100368. https://doi.org/10.1002/advs.202100368
- Shahid A., Aslam B., Muzammil S., et al. The prospects of antimicrobial coated medical implants // Journal of Applied Biomaterials & Functional Materials. 2021. V. 19. P. 22808000211040304. https://doi.org/10.1177/22808000211040304
- Campoccia D., Montanaro L., Arciola C.R. A review of the biomaterials technologies for infection-resistant surfaces // Biomaterials. 2013. V. 34. № 34. P. 8533–8554. https://doi.org/10.1016/j.biomaterials.2013.07.089
- Zilberman M., Elsner J.J. Antibiotic-eluting medical devices for various applications // Journal of Controlled Release. 2008. V. 130. № 3. P. 202–215. https://doi.org/10.1016/j.jconrel.2008.05.020
- Batoni G., Maisetta G., Esin S. Antimicrobial peptides and their interaction with biofilms of medically relevant bacteria // Biochimica et Biophysica Acta (BBA) - Biomembranes. 2016. V. 1858. № 5. P. 1044–1060. https://doi.org/10.1016/j.bbamem.2015.10.013
- Chen R., Shi C., Xi Y. et al. Fabrication of cationic polymer surface through plasma polymerization and layer-by-layer assembly // Materials and Manufacturing Processes. 2020. V. 35. № 2. P. 221–229. https://doi.org/10.1080/10426914.2019.1675892
- Li J., Zhuang S. Antibacterial activity of chitosan and its derivatives and their interaction mechanism with bacteria: Current state and perspectives // European Polymer Journal. 2020. V. 138. P. 109984. https://doi.org/10.1016/j.eurpolymj.2020.109984
- Wrońska N., Katir N., Miłowska K. et al. Antimicrobial effect of chitosan films on food spoilage bacteria // International Journal of Molecular Sciences. 2021. V. 22. № 11. P. 5839. https://doi.org/10.3390/ijms22115839
- Thallinger B., Prasetyo E.N., Nyanhongo G.S., Guebitz G.M. Antimicrobial enzymes: an emerging strategy to fight microbes and microbial biofilms // Biotechnology Journal. 2013. V. 8. № 1. P. 97–109. https://doi.org/10.1002/biot.201200313
- Campoccia D., Montanaro L., Arciola C.R. A review of the biomaterials technologies for infection-resistant surfaces //Biomaterials. 2013. V. 34. № 34. P. 8533–8554. https://doi.org/10.1016/j.biomaterials.2013.07.089
- Hickok N.J., Shapiro I.M. Immobilized antibiotics to prevent orthopaedic implant infections // Advanced drug delivery reviews. 2012. V. 64. № 12. P. 1165–1176. https://doi.org/10.1016/j.addr.2012.03.015
- Cooper L.F., Zhou Y., Takebe J. et al. Fluoride modification effects on osteoblast behavior and bone formation at TiO2 grit-blasted cp titanium endosseous implants // Biomaterials. 2006. V. 27. № 6. P. 926–936. https://doi.org/10.1016/j.biomaterials.2005.07.009
- Valverde A., Pérez-Álvarez L., Ruiz-Rubio L. et al. Antibacterial hyaluronic acid/chitosan multilayers onto smooth and micropatterned titanium surfaces //Carbohydrate polymers. 2019. V. 207. P. 824–833. https://doi.org/10.1016/j.carbpol.2018.12.039
- Lv H., Chen Z., Yang X., et al. Layer-by-layer self-assembly of minocycline-loaded chitosan/alginate multilayer on titanium substrates to inhibit biofilm formation //Journal of dentistry. 2014. V. 42. № 11. P. 1464–1472. https://doi.org/10.1016/j.jdent.2014.06.003
- Li K., Zhao X.K. Hammer B.K., Du S., Chen Y. Nanoparticles inhibit DNA replication by binding to DNA: Modeling and experimental validation // ACS Nano. 2013. V. 7. № 11. P. 9664–9674. https://doi.org/10.1021/nn402472k
- Gorbachevskii M.V., Stavitskaya A.V., Novikov A.A. et al. Fluorescent gold nanoclusters stabilized on halloysite nanotubes: in vitro study on cytotoxicity // Applied Clay Science. 2021. V. 207. P. 106106. https://doi.org/10.1016/j.clay.2021.106106
- Iskuzhina L., Batasheva S., Kryuchkova M. et al. Advances in the Toxicity Assessment of Silver Nanoparticles derived from a Sphagnum fallax extract for Monolayers and Spheroids // Biomolecules. 2024. V. 14. № 6. P. 611. https://doi.org/10.3390/biom14060611
- Mohammadinejad R., Moosavi M.A., Tavakol S. et al. Necrotic, apoptotic and autophagic cell fates triggered by nanoparticles //Autophagy. 2019. V. 15. № 1. P. 4–33. https://doi.org/10.1080/15548627.2018.1509171
- Pangule R.C., Brooks S.J., Dinu C.Z. et al. Antistaphylococcal nanocomposite films based on enzyme − Nanotube conjugates // ACS Nano. 2010. V. 4. № 7. P. 3993–4000. https://doi.org/10.1021/nn100932t
- Zhan Y., Yu S., Amirfazli A. et al. Recent advances in antibacterial superhydrophobic coatings // Advanced Engineering Materials. 2022. V. 24. № 4. P. 2101053. https://doi.org/10.1002/adem.202101053
- Ghilini F., Pissinis D. E., Minan A. et al. How functionalized surfaces can inhibit bacterial adhesion and viability // ACS Biomaterials Science & Engineering. 2019. V. 5. № 10. P. 4920–4936. https://doi.org/10.1021/acsbiomaterials.9b00849
- Sun X., Zhang S., Li H., Bandara N. Chapter 1 - Anti-adhesive coatings: A technique for prevention of bacterial surface fouling // Boddula R., Ahamed M.I., Asiri A.M. (ed.). Green Adhesives: Preparation, Properties and Applications. USA: Scrivener Publishing LLC. 2020. P. 1–23. https://doi.org/10.1002/9781119655053.ch1
- Desrousseaux C., Sautou V., Descamps S., Traoré O. Modification of the surfaces of medical devices to prevent microbial adhesion and biofilm formation // Journal of Hospital Infection. 2013. V. 85. № 2. P. 87–93. https://doi.org/10.1016/j.jhin.2013.06.015
- Hadjesfandiari N., Yu K., Mei Y., Kizhakkedathu J.N. Polymer brush-based approaches for the development of infection-resistant surfaces // Journal of Materials Chemistry B. 2014. V. 2. № 31. P. 4968–4978. https://doi.org/10.1039/C4TB00550C
- Cloutier M., Mantovani D., Rosei F. Antibacterial coatings: Challenges, perspectives, and opportunities // Trends in Biotechnology. 2015. V. 33. № 11. P. 637–652. https://doi.org/10.1016/j.tibtech.2015.09.002
- Huang Z., Ghasemi H. Hydrophilic polymer-based anti-biofouling coatings: Preparation, mechanism, and durability //Advances in Colloid and Interface Science. 2020 V. 284. P. 102264. https://doi.org/10.1016/j.cis.2020.102264
- Boinovich L.B., Kaminsky V.V., Domantovsky A.G. et al. Bactericidal activity of superhydrophobic and superhydrophilic copper in bacterial dispersions // Langmuir. 2019. V. 35. № 7. P. 2832–2841. https://doi.org/10.1021/acs.langmuir.8b03817
- Emelyanenko A.M., Kaminskii V.V., Pytskii I.S. et al. Antibacterial properties of superhydrophilic textured copper in contact with bacterial suspensions // Bulletin of Experimental Biology and Medicine. 2020. V. 168. P. 488–491. https://doi.org/10.1007/s10517-020-04737-5
- Омран Ф.Ш., Каминский В.В., Емельяненко К.А. и др. Влияние биологической загрязненности медных поверхностей с экстремальным смачиванием на их антибактериальные свойства // Коллоидный журнал. 2023. Т. 85. №. 5. С. 641–654. https://doi.org/10.31857/S0023291223600499
- Chen S., Li L., Zhao C., Zheng J. Surface hydration: Principles and applications toward low-fouling / Nonfouling biomaterials // Polymer. 2010. V. 51. № 23. P. 5283–5293. https://doi.org/10.1016/j.polymer.2010.08.022
- Schlenoff J.B. Zwitteration: Coating surfaces with zwitterionic functionality to reduce nonspecific adsorption // Langmuir. 2014. V. 30. №. 32. P. 9625–9636. https://doi.org/10.1021/la500057j
- Estephan Z.G., Schlenoff P.S., Schlenoff J.B. Zwitteration as an alternative to PEGylation // Langmuir. 2011. V. 27. № 11. P. 6794–6800. https://doi.org/10.1021/la200227b
- Hooda A., Goyat M.S., Pandey J.K. et al. A review on fundamentals, constraints and fabrication techniques of superhydrophobic coatings // Progress in Organic Coatings. 2020. V. 142. P. 105557. https://doi.org/10.1016/j.porgcoat.2020.105557
- Kang S.M., You I., Cho W.K. et al. One-step modification of superhydrophobic surfaces by a mussel-inspired polymer coating // Angewandte Chemie International Edition. 2010. V. 49. № 49. P. 9401–9404. https://doi.org/10.1002/anie.201004693
- Packham D.E. Surface energy, surface topography and adhesion // International Journal of Adhesion and Adhesives. 2003. V. 23. № 6. P. 437–448. https://doi.org/10.1016/S0143-7496(03)00068-X
- Xu L., Karunakaran R.G., Guo J., Yang S. Transparent, superhydrophobic surfaces from one-step spin coating of hydrophobic nanoparticles // ACS Applied Materials & Interfaces. 2012. V. 4. № 2. P. 1118–1125. https://doi.org/10.1021/am201750h
- Serles P., Nikumb S., Bordatchev E. Superhydrophobic and superhydrophilic functionalized surfaces by picosecond laser texturing //Journal of Laser Applications. 2018. V. 30. № 3. P. 032505. https://doi.org/10.2351/1.5040641
- Emelyanenko A.M., Shagieva F.M., Domantovsky A.G., Boinovich L.B. Nanosecond laser micro-and nanotexturing for the design of a superhydrophobic coating robust against long-term contact with water, cavitation, and abrasion //Applied Surface Science. 2015. V. 332. P. 513–517. https://doi.org/10.1016/j.apsusc.2015.01.202
- Song B., Zhang E., Han X. et al. Engineering and application perspectives on designing an antimicrobial surface // ACS Applied Materials & Interfaces. 2020. V. 12. № 19. P. 21330–21341. https://doi.org/10.1021/acsami.9b19992
- Cheng G., Li G., Xue H. et al. Zwitterionic carboxybetaine polymer surfaces and their resistance to long-term biofilm formation // Biomaterials. 2009. V. 30. № 28. P. 5234–5240. https://doi.org/10.1016/j.biomaterials.2009.05.058
- Wang W., Lu Y., Zhu H., Cao Z. Superdurable coating fabricated from a double‐sided tape with long term “zero” bacterial adhesion // Advanced Materials. 2017. V. 29. № 34. P. 1606506. https://doi.org/10.1002/adma.201606506
- Feng Y., Wang Q., He M. et al. Antibiofouling zwitterionic gradational membranes with moisture retention capability and sustained antimicrobial property for chronic wound infection and skin regeneration // Biomacromolecules. 2019. V. 20. № 8. P. 3057–3069. https://doi.org/10.1021/acs.biomac.9b00629
- Liang X., Chen X., Zhu J. et al. A simple method to prepare superhydrophobic and regenerable antibacterial films // Materials Research Express. 2020. V. 7. № 5. P. 055307. https://doi.org/10.1088/2053-1591/ab903a
- Ma Y., Li J., Si Y. et al. Rechargeable antibacterial N-halamine films with antifouling function for food packaging applications // ACS Applied Materials & Interfaces. V. 11. № 19. P. 17814–17822. https://doi.org/10.1021/acsami.9b03464
- Del Olmo J.A., Pérez-Álvarez L., Martínez V.S. et al. Multifunctional antibacterial chitosan-based hydrogel coatings on Ti6Al4V biomaterial for biomedical implant applications // International Journal of Biological Macromolecules. 2023. V. 231. P. 123328. https://doi.org/10.1016/j.ijbiomac.2023.123328.
- Chug M.K., Brisbois E.J. Recent developments in multifunctional antimicrobial surfaces and applications toward advanced nitric oxide-based biomaterials // ACS Materials Au. 2022. V. 2. № 5. P. 525–551. https://doi.org/10.1021/acsmaterialsau.2c00040
- Kaminskii V.V., Aleshkin A.V., Zul’karneev E.R. et al. Development of a bacteriophage complex with superhydrophilic and superhydrophobic nanotextured surfaces of metals preventing healthcare-associated infections (HAI) // Bulletin of Experimental Biology and Medicine. 2019. V. 167. P. 500–503. https://doi.org/10.1007/s10517-019-04559-0
- Yu Q., Wu Z., Chen H. Dual-function antibacterial surfaces for biomedical applications // Acta Biomaterialia. 2015. V. 16. P. 1–13. https://doi.org/10.1016/j.actbio.2015.01.018
- Hu X., Neoh K.G., Shi Z. et al. An in vitro assessment of titanium functionalized with polysaccharides conjugated with vascular endothelial growth factor for enhanced osseointegration and inhibition of bacterial adhesion // Biomaterials. 2010. V. 31. № 34. P. 8854–8863. https://doi.org/10.1016/j.biomaterials.2010.08.006
- Zhao J., Song L., Shi Q. et al. Antibacterial and hemocompatibility switchable polypropylene nonwoven fabric membrane surface // ACS Applied Materials & Interfaces. 2013. V. 5. № 11. P. 5260–5268. https://doi.org/10.1021/am401098u
- Yuan S.J., Pehkonen S.O., Ting Y.P. et al. Antibacterial inorganic-organic hybrid coatings on stainless steel via consecutive surface-initiated atom transfer radical polymerization for biocorrosion prevention // Langmuir. 2010. V. 26. № 9. P. 6728–6736. https://doi.org/10.1021/la904083r
- Zou Y., Zhang Y., Yu Q., Chen H. Dual-function antibacterial surfaces to resist and kill bacteria: Painting a picture with two brushes simultaneously // Journal of Materials Science & Technology. 2021. V. 70. P. 24–38. https://doi.org/10.1016/j.jmst.2020.07.028
- Blum A.P., Kammeyer J.K., Rush A.M. et al. Stimuli-responsive nanomaterials for biomedical applications // Journal of the American Chemical Society. 2015. V. 137. № 6. P. 2140–2154. https://doi.org/10.1021/ja510147n
- Zhang J., Liu L., Wang L. et al. pH responsive zwitterionic-to-cationic transition for safe self-defensive antibacterial application // Journal of Materials Chemistry B. 2020. V. 8. № 38. P. 8908–8913. https://doi.org/10.1039/D0TB01717E
- Wei T., Yu Q., Chen H. Responsive and synergistic antibacterial coatings: Fighting against bacteria in a smart and effective way // Advanced Healthcare Materials. 2019. V. 8. № 3. P. 1801381. https://doi.org/10.1002/adhm.201801381
- Cado G., Aslam R., Séon L. et al. Self-defensive biomaterial coating against bacteria and yeasts: Polysaccharide multilayer film with embedded antimicrobial peptide // Advanced Functional Materials. 2013. V. 23. № 38. P. 4801–4809. https://doi.org/10.1002/adfm.201300416
- Ye J., Zhang X., Xie W. et al. An enzyme-responsive prodrug with inflammation‐triggered therapeutic drug release characteristics // Macromolecular Bioscience. 2020. V. 20. № 9. P. 2000116. https://doi.org/10.1002/mabi.202000116
- Fischer N.G., Chen X., Astleford-Hopper K. et al. Antimicrobial and enzyme-responsive multi-peptide surfaces for bone-anchored devices // Materials Science and Engineering: C. 2021. V. 125. P. 112108. https://doi.org/10.1016/j.msec.2021.112108
- Hizal F., Zhuk I., Sukhishvili S. et al. Impact of 3D hierarchical nanostructures on the antibacterial efficacy of a bacteria-triggered self-defensive antibiotic coating // ACS Applied Materials & Interfaces. 2015. V. 7. № 36. P. 20304–20313. https://doi.org/10.1021/acsami.5b05947
- Sutrisno L., Wang S., Li M. et al. Construction of three-dimensional net-like polyelectrolyte multilayered nanostructures onto titanium substrates for combined antibacterial and antioxidant applications // Journal of Materials Chemistry B. 2018. V. 6. № 32. P. 5290–5302. https://doi.org/10.1039/C8TB00192H
- Bu Y., Zhang L., Liu J. et al. Synthesis and properties of hemostatic and bacteria-responsive in situ hydrogels for emergency treatment in critical situations // ACS Applied Materials & Interfaces. 2016. V. 8. № 20. P. 12674–12683. https://doi.org/10.1021/acsami.6b03235
- Hu Q., Du Y., Bai Y. et al. Smart zwitterionic coatings with precise pH-responsive antibacterial functions for bone implants to combat bacterial infections //Biomaterials Science. 2024. V. 12. № 17. P. 4471–4482. https://doi.org/10.1039/D4BM00932K
- Wang T., Liu X., Zhu Y. et al. Metal ion coordination polymer-capped pH-triggered drug release system on titania nanotubes for enhancing self-antibacterial capability of Ti implants // ACS Biomaterials Science & Engineering. 2017. V. 3. № 5. P. 816–825. https://doi.org/10.1021/acsbiomaterials.7b00103
- Liu T., Yan S., Zhou R. et al. Self-adaptive antibacterial coating for universal polymeric substrates based on a micrometer-scale hierarchical polymer brush system // ACS Applied Materials & Interfaces. 2020. V. 12. № 38. P. 42576–42585. https://doi.org/10.1021/acsami.0c13413
- Zou Y., Lu K., Lin Y. et al. Dual-functional surfaces based on an antifouling polymer and a natural antibiofilm molecule: Prevention of biofilm formation without using biocides // ACS Applied Materials & Interfaces. 2021. V. 13. № 38. P. 45191–45200. https://doi.org/10.1021/acsami.1c10747
- Wei H., Song X., Liu P. et al. Antimicrobial coating strategy to prevent orthopaedic device-related infections: Recent advances and future perspectives // Biomaterials Advances. 2022. V. 135. P. 212739. https://doi.org/10.1016/j.bioadv.2022.212739
- Zhang L., Wang Y., Wang J. et al. Photon-responsive antibacterial nanoplatform for synergistic photothermal-/pharmaco-therapy of skin infection // ACS Applied Materials & Interfaces. 2018. V. 11. № 1. P. 300–310. https://doi.org/10.1021/acsami.8b18146
- Wu Q., Wei G., Xu Z. et al. Mechanistic insight into the light-irradiated carbon capsules as an antibacterial agent // ACS Applied Materials & Interfaces. 2018. V. 10. № 30. P. 25026–25036. https://doi.org/10.1021/acsami.8b04932
- Chen X., Zhou J., Qian Y., Zhao L. Antibacterial coatings on orthopedic implants // Materials Today Bio. 2023. V. 19. P. 100586. https://doi.org/10.1016/j.mtbio.2023.100586
- Wei T., Qu Y., Zou Y. et al. Exploration of smart antibacterial coatings for practical applications // Current Opinion in Chemical Engineering. 2021. V. 34. P. 100727. https://doi.org/10.1016/j.coche.2021.100727
Дополнительные файлы
