Gold alloying of ZnO crystals during their growth via the vapor-liquid-solid mechanism doping ZnO crystals with gold during their growth by the vapor-liquid-crystal method

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Arrays of ZnO microcrystals were grown on a silicon substrate (111) by applying the vapor deposition method with the vapor-liquid-crystal mechanism, where the liquid phase was gold. Differences in the obtained crystals at growth times of 5, 10, and 15 minutes are described. The lattice parameters of the microcrystals were calculated as the growth time increased: a = 3.316, c = 5.281; a = 3.291, c = 5.270; a = 3.286, c = 5.258 Å. The change in Au content in the microcrystals as they grew was determined, from 0.520 at. % at the substrate to 0.035 at. % on the crystal surfaces after 15 minutes of growth. Maps of the atomic element distribution are presented, and an the differences in lattice parameters of the obtained crystals compared to standard values are explained.

全文:

受限制的访问

作者简介

P. Podkur

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: volch2862@gmail.com
俄罗斯联邦, Moscow

I. Volchkov

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

编辑信件的主要联系方式.
Email: volch2862@gmail.com
俄罗斯联邦, Moscow

L. Zadorozhnaya

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: volch2862@gmail.com
俄罗斯联邦, Moscow

V. Kanevskii

Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”

Email: volch2862@gmail.com
俄罗斯联邦, Moscow

参考

  1. Jayaprakash N., Suresh R., Rajalakshmi S. et al. // Mater. Technol. 2019. V. 35. P. 112. https://doi.org/10.1080/10667857.2019.1659533
  2. Абдуев А.Х., Ахмедов А.К., Асваров А.Ш. // Письма в ЖТФ. 2014. Т. 40. С. 71.
  3. Наумов А.В., Плеханов С.И. // Энергия: экономика, техника, экология. 2013. Т. 7. С. 14.
  4. Rai P., Raj S., Ko K.-J. et al. // Sens. Actuators B Chem. 2013. V. 178. P. 107. https://doi.org/10.1016/j.snb.2012.12.031
  5. Zhao X., Lou F., Li M. et al. // Ceram. Int. 2014. V. 40. P. 5507. https://doi.org/10.1016/j.ceramint.2013.10.140
  6. Pagano R., Ingrosso C., Giancane G. et al. // Materials. 2020. V. 13. P. 2938. https://doi.org/10.3390/ma13132938
  7. Ohtomo A., Kawasaki M., Ohkubo I. et al. // Appl. Phys. Lett. 1999. V. 75. P. 980. https://doi.org/10.1063/1.124573
  8. Брискина Ч.М., Маркушев В.М., Задорожная Л.А. и др. // Квантовая электроника. 2022. Т. 52. С. 676.
  9. Грузинцев А.Н., Волков В.Т., Емельченко Г.А. и др. // Физика и техника полупроводников. 2002. Т. 37. С. 330.
  10. Li Z., Wang C. One-Dimensional Nanostructures Electrospinning: Technique and Unique Nanofibers. New York, Dordrecht, London: Springer Berlin Heidelberg, 2013. 141 p. https://doi.org/10.1007/978-3-642-36427-3
  11. Ляпина О.А., Баранов А.Н., Панин Г.Н. и др. // Неорган. матер. 2008. Т. 44. С. 958.
  12. Islam M.R., Rahman M., Farhad S.F.U. et al. // Surf. Interfaces. 2019. V. 16. P. 120. https://doi.org/10.1016/j.surfin.2019.05.007
  13. Тарасов А.П., Брискина Ч.М., Маркушев В.М. и др. // Письма в ЖЭТФ. 2019. Т. 110. С. 750. https://doi.org/10.1134/S0370274X19230073
  14. Тарасов А.П., Задорожная Л.А., Муслимов А.Э. и др. // Письма в ЖЭТФ. 2021. Т. 114. С. 596. https://doi.org/10.31857/S1234567821210035
  15. Абдуев А.Х., Ахмедов А.К., Асваров А.Ш. и др. // Кристаллография. 2020. Т. 65. С. 489. https://doi.org/10.31857/S0023476120030029
  16. Yamamoto T., Katayama-Yoshida H. // Jpn. J. Appl. Phys. 1999. V. 38. P. L166. https://doi.org/10.1143/JJAP.38.L166
  17. Joseph M., Tabata H., Kawai T. // Jpn. J. Appl. Phys. 1999. V. 38. P. L1205. https://doi.org/10.1143/JJAP.38.L1205
  18. Minegishi K., Koiwai Y., Kikuchi Y. et al. // Jpn. J. Appl. Phys. 1997. V. 36. P. L1453. https://doi.org/10.1143/JJAP.36.L1453
  19. Георгобиани А.Н., Грузинцев А.Н., Волков В.Т. и др. // Физика и техника полупроводников. 2002. Т. 36. С. 284.
  20. Sernelius B.E., Berggren K.-F., Jin Z.-C. et al. // Phys. Rev. B. 1988. V. 37. P. 10244. https://doi.org/10.1103/PhysRevB.37.10244
  21. Yoon M.H., Lee S.H., Park H.L. et al. // J. Mater. Sci. Lett. 2002. V. 21. P. 1703. https://doi.org/10.1023/A:1020841213266
  22. Nan T., Zeng H., Liang W. et al. // J. Cryst. Growth. 2012. V. 340. P. 83. https://doi.org/10.1016/j.jcrysgro.2011.12.047
  23. Liu M., Qu S.W., Yu W.W. et al // Appl. Phys. Lett. 2010. V. 97. P. 231906. https://doi.org/10.1063/1.3525171
  24. Khalid A., Ahmad P., Alharthi A.I. et al. // Materials. 2021. V. 14. P. 3223. https://doi.org/10.3390/ma14123223
  25. Асваров А.Ш., Ахмедов А.К., Муслимов А.Э. и др. // Письма в ЖТФ. 2022. Т. 48. С. 51. https://doi.org/10.21883/PJTF.2022.02.51914.19001
  26. Alsaad A.M., Ahmad A.A., Qattan I.A. et al. // Crystals. 2020. V. 10. P. 252. https://doi.org/10.3390/cryst10040252
  27. Волчков И.С., Ополченцев А.М., Задорожная Л.А. и др. // Письма в ЖТФ. 2019. Т. 45. С. 7. https://doi.org/10.21883/PJTF.2019.13.47948.17808
  28. González-Garnica M., Galdámez-Martínez A., Malagón F. et al. // Sens. Actuators B Chem. 2021. V. 337. P. 129765. https://doi.org/10.1016/j.snb.2021.129765
  29. Редькин А.Н., Маковей З.И., Грузинцев А.Н. и др. // Неорган. матер. 2007. Т. 43. С. 301.
  30. Zadorozhnaya L.A., Tarasov A.P., Volchkov I.S. et al. // Materials. 2022. V. 15. P. 8165. https://doi.org/10.3390/ma15228165

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. SEM images of ZnO:Au microcrystals and the distribution map of elements (Zn, Au, O) at growth time of 5 (a), 10 (b), 15 min (c). The insets show SEM images of cross sections of the samples

下载 (1MB)
3. Fig. 2. X-ray diffractograms of ZnO:Au microcrystals

下载 (484KB)
4. Fig. 3. X-ray diffractograms of ZnO:Au microcrystals in the angle range 2 = 30.5-34.5

下载 (190KB)
5. Fig. 4. Change of gold content in ZnO microcrystals as their size increases

下载 (107KB)

版权所有 © Russian Academy of Sciences, 2024