Эрозионная ультразвуковая очистка катодной ленты отработанных литий-ионных аккумуляторов типа NMC

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Предложен метод очистки катодной фольги отработанного литий-ионного аккумулятора от катодного материала с помощью ультразвука. Разработана общая схема компоновки устройств с анализом взаимодействия всех основных узлов конструкции. В основу метода положен эффект кавитационной ультразвуковой эрозии твердых тел, помещенных в жидкость, которая находится под воздействием ультразвука. Получено выражение для глубины слоя покрытия, который удаляется с ленты при однократном прохождении всей ее длины через все зоны кавитации устройства. Выполнен аналитический и численный анализ зависимости скорости очистки от интенсивности ультразвука, его частоты, скорости движения ленты и других параметров схемы. Экспериментально показана возможность эффективной очистки алюминиевой фольги от катодного материала литий-ионного аккумулятора типа NMC.

About the authors

О. М. Градов

Институт общей и неорганической химии им. Н. С. Курнакова РАН

Author for correspondence.
Email: lutt.plm@igic.ras.ru
Russian Federation, Москва

И. В. Зиновьева

Институт общей и неорганической химии им. Н. С. Курнакова РАН

Email: lutt.plm@igic.ras.ru
Russian Federation, Москва

Ю. А. Заходяева

Институт общей и неорганической химии им. Н. С. Курнакова РАН

Email: lutt.plm@igic.ras.ru
Russian Federation, Москва

А. А. Вошкин

Институт общей и неорганической химии им. Н. С. Курнакова РАН

Email: lutt.plm@igic.ras.ru
Russian Federation, Москва

References

  1. Nitta N., Wu F., Lee J.T., Yushin G. Li-Ion Battery Materials: Present and Future // Materials Today. 2015. V. 18. № 5. P. 252–264. https://doi.org/10.1016/j.mattod.2014.10.0402.
  2. Harper G., Sommerville R., Kendrick E., Driscoll L., Slater P., Stolkin R. et al. Recycling lithium-ion batteries from electric vehicles // Nature. 2019. № 575. P. 75–86. https://doi.org/10.1038/s41586-019-1682-53.
  3. Xie, J., Lu Y.-C. A Retrospective on Lithium-Ion Batteries // Nat. Commun. 2020. V. 11. № 1. P. 2499. https://doi.org/10.1038/s41467–020–16259–94.
  4. Torkaman R., Asadollahzadeh M., Torab-Mostaedi M., Ghanadi Maragheh M. Recovery of cobalt from spent lithium ion batteries by using acidic and basic extractants in solvent extraction process // Sep. Purif. Technol. 2017. V. 186. P. 318–325, https://doi.org/10.1016/j.seppur.2017.06.0235.
  5. Fan E., Li L., Wang Z., Lin J., Huang Y., Yao Y., Chen R., Wu F. Sustainable recycling technology for li-ion batteries and beyond: challenges and future prospects // Chem. Rev. 2020. V. 120. № 14. P. 7020–7063. https://doi.org/10.1021/acs.chemrev.9b005356.
  6. Ma Y., Svärd M., Xiao X., Gardner J.M., Olsson R.T., Forsberg K. Precipitation and crystallization used in the production of metal salts for li-ion battery materials: a review // Metals. 2020. V. 10. № 12. P. 1609. https://doi.org/10.3390/met101216097.
  7. Kim K., Raymond D., Candeago R., Su X. Selective cobalt and nickel electrodeposition for lithium-ion battery recycling through integrated electrolyte and interface control // Nat. Commun. 2021. V. 12. № 1. P. 6554. https://doi.org/10.1038/s41467-021-26814-78.
  8. Jin S., Mu D., Lu Z., Li R., Liu Z., Wang Y., Tian S., Dai C. A comprehensive review on the recycling of spent lithium-ion batteries: urgent status and technology advances // J. Clean. Prod. 2022. V. 340. P. 130535. https://doi.org/10.1016/j.jclepro.2022.1305359.
  9. Jung J.C.-Y., Sui P.-C., Zhang J. A Review of recycling spent lithium-ion battery cathode materials using hydrometallurgical treatments // J. Energy Storage. 2021. V. 35. P. 102217. https://doi.org/10.1016/j.est.2020.10221710.
  10. Lei S., Sun W., Yang Y. Solvent Extraction for Recycling of Spent Lithium-Ion Batteries // J. Hazard Mater. 2022. V. 424. P. 127654. https://doi.org/10.1016/j.jhazmat.2021.12765411.
  11. Qin L., Di J., He Y. Efficient synthesis of furfuryl alcohol from corncob in a deep eutectic solvent system // Processes. 2022. V. 10. P. 1873. https://doi.org/10.3390/pr1009187312.
  12. Gradov O.M., Zinov’eva I.V., Zakhodyaeva Yu.A., Voshkin A. A. Kinetics of ultrasonic dissolution of metal oxide powder for different spatial combinations of the cavitation region and eckart acoustic flow // Theor Found. Chem. Eng. 2023. V. 57. P. 255–264. https://doi.org/10.1134/S004057952303006513.
  13. Zhang T., He Y., Ge L., Fu R., Zhang X., Huang, Y. Characteristics of wet and dry crushing methods in the recycling process of spent lithium-ion batteries // J. Power Sources. 2013. V. 240. P. 766–771. https://doi.org/10.1016/j.jpowsour.2013.05.00914.
  14. Chen L., Tang X., Zhang Y., Li L., Zeng Z., Zhang Y. Process for the recovery of cobalt oxalate from spent lithium-ion batteries // Hydrometallurgy. 2011. V. 108. P. 80–86. https://doi.org/10.1016/j.hydromet.2011.02.01015.
  15. Li J., Shi P., Wang Z., Chen Y., Chang C.-C. A Combined recovery process of metals in spent lithium-ion batteries // Chemosphere. 2009. V. 77. P. 1132–1136. https://doi.org/10.1016/j.chemosphere.2009.08.04016.
  16. Wang M., Tan Q., Liu L., Li J. Efficient separation of aluminum foil and cathode materials from spent lithium-ion batteries using a low-temperature molten salt // ACS Sustain Chem. Eng. 2019. V. 7. P. 8287–8294. https://doi.org/10.1021/acssuschemeng.8b0669417.
  17. Zou H., Gratz E., Apelian D., Wang Y. A Novel method to recycle mixed cathode materials for lithium ion batteries // Green Chemistry. 2013. V. 15. P. 1183. https://doi.org/10.1039/c3gc40182k18.
  18. Zeng X., Li J. Innovative application of ionic liquid to separate al and cathode materials from spent high-power lithium-ion batteries // J. Hazard Mater. 2014. V. 271. P. 50–56. https://doi.org/10.1016/j.jhazmat.2014.02.00119.
  19. Gu K., Chang J., Mao X., Zeng H., Qin W., Han J. Efficient separation of cathode materials and al foils from spent lithium batteries with glycerol heating: a green and unconventional way // J. Clean Prod. 2022. V. 369. P. 133270. https://doi.org/10.1016/j.jclepro.2022.13327020.
  20. Wang H., Liu J., Bai X., Wang S., Yang D., Fu Y., He Y. Separation of the cathode materials from the al foil in spent lithium-ion batteries by cryogenic grinding // Waste Management. 2019. V. 91. P. 89–98. https://doi.org/10.1016/j.wasman.2019.04.05821.
  21. Zinov’eva I.V., Fedorov A.Ya., Milevskii N.A., Zakhodyaeva Yu.A., Voshkin A.A. Dissolution of metal oxides in a choline chloride – sulphosalicylic acid deep eutectic solvent // Theor. Found. Chem. Eng. 2021. V. 55. P. 663–670. https://doi.org/10.1134/S004057952104037022.
  22. Ijardar S.P., Singh V., Gardas R.L. Revisiting the physicochemical properties and applications of deep eutectic solvents // Molecules. 2022. V. 27. P. 1368. https://doi.org/10.3390/molecules2704136823.
  23. Gradov O.M., Zinov’eva I.V., Zakhodyaeva Y.A., Voshkin A.A. Modelling of the erosive dissolution of metal oxides in a deep eutectic solvent – choline chloride/sulfosalicylic acid – assisted by ultrasonic cavitation // Metals. 2021. V. 11. P. 1964. https://doi.org/10.3390/met1112196424.
  24. Zinov’eva I.V., Fedorov A.Ya., Milevskii N.A., Zakhodyaeva Yu.A., Voshkin A.A. A deep eutectic solvent based on choline chloride and sulfosalicylic acid: properties and applications // Theor. Found. Chem. Eng. 2021. V. 55. P. 371–379. https://doi.org/10.1134/S004057952103024625.
  25. Milevsky N.A., Zinovieva I.V., Zakhodyaeva Yu.A., Voshkin A.A. Extractive Separation of Co/Ni pair with the deep eutectic solvent aliquat 336/Timol // Theor. Found. Chem. Eng. 2022. V. 56. P. 45–52. https://doi.org/10.1134/S0040579522010080
  26. Milevskii N.A., Zinov’eva I.V., Zakhodyaeva Yu.A., Voshkin A.A. Separation of Li(I), Co(II), Ni(II), Mn(II), and Fe(III) from hydrochloric acid solution using a menthol-based hydrophobic deep eutectic solvent // Hydrometallurgy. 2022. V. 207. P. 105777. https://doi.org/10.1016/j.hydromet.2021.10577727.
  27. Flynn H. G. Physics of Acoustic Cavitations in Liquids // Physical acoustics – Principles and methods. NY.: Academic Press, 1964, P. 376.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Diagram of the impact of a spherical shock wave from a cavitation cavity on a flat surface of a solid body.

Download (115KB)
3. Fig. 2. Scheme of ultrasonic cavitation cleaning of cathode tapes of compact power sources: a) – side view; b) – top view. 1 – distribution of ultrasound intensity in the space between piezoelectric plates; 2 – location of cavitation areas; 3 – cathode tape subjected to ultrasonic cleaning; 4 – positions of piezoceramic plates.

Download (247KB)
4. Fig. 3. Schematic diagram of the experimental setup for studying the cleaning of aluminum foil from cathode material.

Download (89KB)
5. Fig. 4. Dependence of the depth of the layer of the removed coating in the process of ultrasonic cavitation cleaning of cathode tapes of lithium-ion batteries on the frequency and power of the ultrasound during a single passage of the entire tape through the cavitation areas.

Download (357KB)
6. Fig. 5. Time for complete cleaning of aluminum foil from cathode material depending on the power of the ultrasonic generator, W: 1–33; 2–44; 3–55; 4–66. Temperature 20 °C.

Download (287KB)
7. Fig. 6. Time for complete cleaning of aluminum foil from cathode material in a 1 M citric acid solution depending on temperature at power, W: 1–33; 2–44.

Download (149KB)

Copyright (c) 2024 Russian Academy of Sciences