Entropy of Coherent States of Optical Fields

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We consider statistical mixtures of two and three arbitrary coherent states that are the states of a data carrier in an optical communication channel. The eigenvalues and eigenvectors of the corresponding density operators are obtained in analytic form. For this purpose, an original parameterization of triangles on the complex phase plane is introduced. Analytic expressions are obtained for the von Neumann entropy of mixtures of two and three arbitrary coherent states, and its maximal value for a given average number of photons is calculated. It is found that the use of three coherent states for a given average number of photons ensures a larger capacity of an optical communication channel as compared to two states.

作者简介

M. Eskanderi

Institute of Physics, National Academy of Sciences of Belarus

Email: dhoroshko@yahoo.com
220072, Minsk, Belarus

S. Kilin

Institute of Physics, National Academy of Sciences of Belarus

Email: dhoroshko@yahoo.com
220072, Minsk, Belarus

D. Khoroshko

Institute of Physics, National Academy of Sciences of Belarus

编辑信件的主要联系方式.
Email: dhoroshko@yahoo.com
220072, Minsk, Belarus

参考

  1. С. Я. Килин, Квантовая оптика. Поля и их детектирование, Едиториал УРСС, Москва (2003).
  2. В. А. Фок, Начала квантовой механики, Наука, Москва (1976).
  3. С. Я. Килин, УФН 169, 507 (1999).
  4. К. Хелстром, Квантовая теория проверки гипотез и оценивания, Мир, Москва (1979).
  5. Дж. Прокис, Цифровая связь, Радио и связь, Москва (2000).
  6. T. Muciaccia, F. Gargano, and V. M. N. Passaro, Photonics 1, 323 (2014).
  7. I. A. Burenkov, O. V. Tikhonova, S. V. Polyakov, Optica 5, 227 (2018).
  8. I. B. Djordjevic, Advanced Coding for Optical Communications, in Optical Fiber Telecommunications (Sixth Edition), ed. by I. P. Kaminow, T. Li, and A. E. Willner, Academic Press, Boston (2013).
  9. I. Khan, D. Elser, T. Dirmeier et al., Phil. Trans. Roy. Soc. A 375, 20160235 (2017).
  10. Квантовая криптография: идеи и практика, под ред. С. Я. Килина, Д. Б. Хорошко, А. П. Низовцева, Белорусская наука, Минск (2007).
  11. D. Sych and G. Leuchs, New J. Phys. 12, 053019 (2010).
  12. Д. Б. Хорошко, Д. И. Пустоход, С. Я. Килин, Опт. и спектр. 112, 373 (2012).
  13. B. Schumacher, Phys. Rev. A 51, 2738 (1995).
  14. S. Ya. Kilin, Progr. Opt. 42, 3 (2001).
  15. A. Furusawa, J. L. Sørensen, S. L. Braunstein et al., Science 282, 706 (1998).
  16. D. B. Horoshko and S. Ya. Kilin, Phys. Rev. A 61, 032304 (2000).
  17. J. H. Shapiro, G. Saplacoglu, S.-T. Ho et al., J. Opt. Soc. Amer. B 4, 1604 (1987).
  18. A. V. Masalov, A. A. Putilin, and M. V. Vasilyev, J. Mod. Opt. 41, 1941 (1994).
  19. Д. Б. Хорошко, С. Я. Килин, ЖЭТФ 106, 1278 (1994).
  20. I. V. Dudinets and V.I. Man'ko, J.Russ. Laser. Res. 36, 251 (2015).
  21. K. Br'adler and C. Weedbrook, Phys. Rev. A 97, 022310 (2018).
  22. А. С. Холево, Пробл. перед. инф. 9, 177 (1973).
  23. R. J. Glauber, Phys. Rev. 131, 2766 (1963).
  24. C. E. Shannon, Bell System Techn. J. 27, 379 (1948).
  25. V.V. Dodonov, I.A. Malkin and V.I. Man'ko, Physica 72, 597 (1974).
  26. S. Haroche and J.-M. Raimond, Exploring the Quantum: Atoms, Cavities and Photons, Oxford Univ. Press (2006).
  27. D. B. Horoshko and S. Ya. Kilin, J. Mod. Opt. 44, 2043 (1997).
  28. D. B. Horoshko, S. Ya. Kilin, Opt. Express 2, 347 (1998).
  29. Д. Б. Хорошко, С. Я. Килин, ЖЭТФ 117, 844 (2000).
  30. R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge Univ. Press (2013).
  31. R. Deaux, Introduction to the Geometry of Complex Numbers, Dover Publ. (2008).
  32. D. B. Horoshko, S. De Bi'evre, M. I. Kolobov et al., Phys. Rev. A 93, 062323 (2016).

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2023