Effect of Halogen at the Divalent Sulfur Atom on the Properties of Complexes with a Chalcogen and Hydrogen Bond

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Binary complexes with a chalcogen (A complexes) and hydrogen (B complexes) bond formed by SHX molecules (X = F, Cl, Br, OH) of divalent sulfur and a water molecule have been calculated by the MP2/aug-cc-pVTZ quantum chemical method. An NBO analysis was performed for complexes of both types along with the topological analysis of electron density and decomposition of the binding energy into components. The quantum chemical calculations showed that the binding energies, interorbital interaction energies of monomers, and electron densities at the critical point (3, –1) of intermolecular contact are close in the A and B complexes. The main contribution to stabilization of the complexes is made by the electrostatic interaction; in the B complexes, however, the contribution of the charge transfer component is also significant. The dispersion energy plays a significant role in the binding of monomers in complexes of both types. According to the calculations, the interconversion of A and B complexes occurs with a very low activation barrier.

Sobre autores

A. Isaev

Zelinskii Institute of Organic Chemistry, Russian Academy of Sciences

Autor responsável pela correspondência
Email: isaevaln@ioc.ac.ru
119991, Moscow, Russia

Bibliografia

  1. Kollman P. // J. Am. Chem. Soc. 1977. V. 99. P. 4875.
  2. Clark T., Hennemann M., Murray J.S., Politzer P. // J. Mol. Model. 2007. V. 1. P. 291.
  3. Auffinger P., Hays F.A., Westhof E., Ho P.S. // Proc. Natl. Acad. Sci. USA 2004. V. 101. P. 16789.
  4. Wang W., Ji B., Zhang Y. // J. Phys. Chem. A 2009. V. 113. P. 8132.
  5. Murray J.S., Lane P., Politzer P. // Int. J. Quantum Chem. 2007. V. 107. P. 2286.
  6. Murray J.S., Lane P., Politzer P. // J. Mol. Model. 2009. V. 15. P. 723.
  7. Murray J.S., Lane P., Clark T. et al. // Ibid. 2012. V. 18. P. 541.
  8. Wheeler S.E., Houk K.N. // J. Chem. Theory Comput. 2009. V. 5. P. 2301.
  9. Riley K.E., Hobza P. // J. Chem. Theory Comput. 2008. V. 4. P. 232.
  10. Riley K.E., Murray J.S., Politzer P. et al. // J. Chem. Theory Comput. 2009. V. 5. P. 155.
  11. Riley K.E., Hobza P. // Phys. Chem. Chem. Phys. 2013. V. 15. P. 17742.
  12. Deepa P., Pandiyan B.V., Kolandaivel P., Hobza P. // Phys. Chem. Chem. Phys. 2014. V. 16. P. 2038.
  13. Rosokha S.V., Stern C.L., Ritzert J.T. // Chem. – Eur. J. 2013. V. 19. P. 8774.
  14. Rosokha S.V., Vinakos M.K. // Phys. Chem. Chem. Phys. 2014. V. 16. P. 1809.
  15. Wolters L.P., Bickelhaupt F.M. // Chemistry Open 2012. V. 1. P. 96.
  16. Zhang X.Y., Zeng Y.L., Li X.Y. et al. // Struct. Chem. 2011. V. 22. P. 567.
  17. Frisch M.J., Trucks G.W., Schlegel H.B. et al. Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford CT, 2009.
  18. Quiñonero D., Estarellas C., Frontera A., Deyà P.M. // Chem. Phys. Lett. 2011. V. 508. P. 144.
  19. Moller C., Plesset M.S. // Phys. Rev. 1934. V. 46. P. 618.
  20. Kendall R.A., Dunning T.H. Jr., Harrison R.J. // J. Chem. Phys. 1992. V. 96. P. 6796.
  21. Boys S.F., Bernardi F. // Mol. Phys. 1970. V. 19. P. 553.
  22. Reed A.E., Weinhold F., Curtiss L.A., Pochatko D.J. // J. Chem. Phys. 1986. V. 84. P. 5687.
  23. Reed A.E., Curtiss L.A., Weinhold F. // Chem. Rev. 1988. V. 88. P. 899.
  24. Ditchfield R. // Mol. Phys. 1974, V. 27. P. 789.
  25. Wolinski K., Hilton J.F., Pulay P. // J. Am. Chem. Soc. 1990. V. 112. P. 8251.
  26. Lu T., Chen F. // J. Comp. Chem. 2012. V. 33. P. 580.
  27. Bader R.F.W. // Chem. Rev. 1991. V. 91. P. 893.
  28. Bader R.F.W. Atoms in molecules, a quantum theory. Oxford: Clarendon Press. 1993.
  29. Schmidt M.W., Baldridge K.K., Boatz J.A. et al. // J. Comput. Chem. 1993. V. 14. P. 1347.
  30. Gordon M.S., Schmidt M.W. // Theory and Applications of Computational Chemistry: the first forty years. Eds. C.E. Dykstra, G. Frenking, K.S. Kim, G.E. Scuseria . Asterdam: Elsevier, 2005. 1167 p.
  31. Nepal B., Scheiner S. // Chemical Physics 2015. V. 456. P. 34.
  32. Mó O., Yánez M., Elguero J. // J. Mol. Struct. (Theochem) 1994. V. 314. P. 73.
  33. Espinosa E., Molins E., Lecomte C. // Chem. Phys. Lett. 1998. V. 285. P. 170.
  34. Popelier P.L.A. // J. Phys. Chem. A 1998. V. 102. P. 1873.
  35. Cremer D., Kraka E. // Angew. Chem., Int. Ed. Engl. 1984. V. 23. P. 627.
  36. Isaev A.N. // Comput. Theoret. Chem. 2017. V. 1117. P. 141.
  37. Isaev A.N. // Chem. Phys. Lett. 2021. V. 763. 138195.
  38. Morokuma K., Kitaura K. Molecular Interactions. York: WileyNew, 1980. P. 21.
  39. Steiner T. // Angew. Chem., Int. Ed. Engl. 2002. V. 41. P. 48.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (220KB)
3.

Baixar (543KB)
4.

Baixar (74KB)
5.

Baixar (108KB)
6.

Baixar (270KB)

Declaração de direitos autorais © А.Н. Исаев, 2023