Possible Ferromagnetism of a Nitrogen-Doped Carbon Material

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A nitrogen-doped carbon material (NDCM) is synthesized by grinding a graphene oxide–melamine mixture in a planetary mill in which the balls and the body are both made of zirconium dioxide. In addition to a narrow signal at g = 2.0034, the EPR spectrum of the NDCM exhibits a broad signal at g = 2.08. Studies with a magnetometer show the NDCM is presumably a ferromagnetic material with a saturation magnetization at room temperature of approximately 0.02 emu/g and a coercive force of 100 Oe.

Sobre autores

V. Vasiliev

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: vvp@icp.ac.ru
142432, Chernogolovka, Moscow oblast, Russia

E. Kabachkov

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences

Email: vvp@icp.ac.ru
142432, Chernogolovka, Moscow oblast, Russia

A. Kulikov

142432, Chernogolovka, Moscow oblast, Russia

Email: vvp@icp.ac.ru
142432, Chernogolovka, Moscow oblast, Russia

Yu. Morozov

Merzhanov Institute of Structural Macrokinetics and Problems of Materials Science, Russian Academy of Sciences

Email: vvp@icp.ac.ru
142432, Chernogolovka, Moscow oblast, Russia

Yu. Shulga

Merzhanov Institute of Structural Macrokinetics and Problems of Materials Science, Russian Academy of Sciences

Autor responsável pela correspondência
Email: vvp@icp.ac.ru
142432, Chernogolovka, Moscow oblast, Russia

Bibliografia

  1. Vasiliev V.P., Manzhos R.A., Krivenko A.G. et al. // Mendeleev Commun. 2021. V. 31. P. 529.
  2. Vasiliev V.P., Manzhos R.A., Kochergin V.K. et al. // Materials. 2022. V. 15. AID 821 (11p).
  3. Hummers W.S., Offeman R.E. // J. Am. Chem. Soc. 1958. V. 80. P. 1339.
  4. Lazar P., Mach R., Otyepka M. // J. Phys. Chem. C. 2019. V. 123. P. 10695.
  5. Wang B., Fielding A.J., Robert A.W. // Ibid. 2019. V. 123. P. 2556.
  6. Makarova T.L., Sundqvist B., Höhne R. et al. // Nature. 2001. V. 413. P. 716.
  7. Antonov V.E., Bashkin I.O., Khasanov S.S. et al. // J. Alloy. Compd. 2002. V. 330–332. P. 365.
  8. Wang Y., Huang Y., Song Y. et al. // Nano Letters. 2009. V. 9. P. 220.
  9. Ovchinnikov. A.A. // Dokl. (Proc.) Acad. Sci. USSR. 1977. V. 236. P. 928.
  10. Ovchinnikov A.A. // Theor. Chim. Acta. 1978. V. 47. P. 297.
  11. Ovchinnikov A.A., Shamovsky I.L. // J. Mol. Struct. (Theochem). 1991. V. 83. P. 133.
  12. Wang Y., Guo Y., Wang Z. et al. // ACS Nano. 2021. V. 15. P. 12069.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (54KB)
3.

Baixar (59KB)
4.

Baixar (36KB)
5.

Baixar (101KB)

Declaração de direitos autorais © В.П. Васильев, Е.Н. Кабачков, А.В. Куликов, Ю.Г. Морозов, Ю.М. Шульга, 2023