Effect of Carbon on the Adsorption Properties of a Co/MgAl2O4 Catalyst for Carbon Monoxide Hydrogenation

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A study is performed of cobalt/MgAl2O4 catalysts promoted with glucose at Co/C molar ratios of 16.5, 3.2, and 1.6 via sequential deposition and codeposition. Magnetometry and IR spectroscopy of adsorbed CO show that raising the content of carbon in the catalyst contributes to the reduction of cobalt, regardless of how Co is introduced. Infrared spectroscopy reveals the main adsorption sites are cobalt cations and metallic Co. A strong contribution from adsorption sites characteristic of large Co particles is observed in systems synthesized via codeposition. Adsorption sites attributed to Co2+ and Coδ+ are structurally more homogeneous than ones attributed to metallic Co.

Sobre autores

G. Pankina

Faculty of Chemistry, Moscow State University

Email: pankina5151@inbox.ru
119992, Moscow, Russia

A. Kharlanov

Faculty of Chemistry, Moscow State University

Email: kharl@kge.msu.ru
119992, Moscow, Russia

P. Chernavskii

Faculty of Chemistry, Moscow State University

Autor responsável pela correspondência
Email: kharl@kge.msu.ru
119992, Moscow, Russia

Bibliografia

  1. Khodakov A.Y., Chu W., Fongarland P. // Chem. Rev. 2007. V. 107. P. 1692.
  2. Qi Z.Y., Chen L.N., Zhang S.C. et al. // Appl. Catal. A Gen. 2020.V. 602. P. 117701.
  3. Zhang Q., Kang J., Wang Y. // ChemCatChem. 2010. V. 2. P. 1030.
  4. Girardon J.S., Quinet G., Griboval-Cocstant A. et al. // J. Catal. 2007. V. 248. P. 143.
  5. Shi L., Zeng C.Y., Lin Q.H. et al. // Catal. Today. 2014. V. 228. P. 206.
  6. Jos van Dillen A., Terörde R.J.A.M., Lensveld D.J. et al. // J. Catal. 2003. V. 216. P. 257.
  7. Qing-Qing Hao, Min Hu, Zhi-Xia Xie et al. // Catalysts. 2020. V. 10. P. 1295.
  8. Machizuki T., Hara T., Koizumi N., Yamada M. //Appl. Catal. A. Gen. 2007. V. 317. P. 97.
  9. Kang Cheng, Vijayanand Subramanianb, Alexandre Carvalho et al. // J. Catal. 2016. V. 337. P. 260.
  10. Munnik P., de Jough P.E., de Jong K.P. // J. Am. Chem. Soc. 2014. V. 136. P. 7333.
  11. den Breejen J.P., Sietsma J.R.A., Friedrich H. et al. // J. Catal. 2010. V. 270. P. 146.
  12. Панкина Г.В., Харланов А.Н., Чернавский П.А. // Журн. физ. химии. 2022. Т. 96. № 5. С. 651.
  13. Чернавский П.А., Панкина Г.В., Лунин В.В. // Успехи химии. 2011. Т. 80. № 6. С. 605.
  14. Sort J., Surinach S., Munoz J.S. // Phys. Rev. B: Condens. Matter. 1997. V. 68. P. 014421.
  15. Barbier A., Tuel A., Arcon I. et al. // J. Catal. 2001. V. 200. P. 106.
  16. Chernavskii P.A., Vei Chu, Khodakov A.Yu. et al. // Russ. J. Phys. Chem. A. 2008. V. 82. № 6. P. 951.
  17. Davydov A. Molecular Spectroscopy of Oxide Catalyst Surfaces. Willey, 2003. 668 p.
  18. Jansson J., Palmqvist A.E.C., Fridell E. et al. // J. Catal. 2002. V. 211. P. 387.
  19. Todorova S., Zhelyazkov V., Kadinov G. // React. Kinet. Catal. Lett. 1996. V. 57. № 1. P. 105.
  20. Mergler Y.J., van Aalst A., van Delft J., and Nieuwenhuys B.E. // J. Catal. 1996. V. 161. P. 310.
  21. Busca G., Guidetti R., Lorenzelli V. // J. Chem. Soc. Faraday Trans.1990. V. 86. № 6. P. 989
  22. Чионг Т.Т., Давыдов А.А. // Журн. физ. химии. 1989. Т. 63. № 1. С. 271.
  23. Mergler Y.J., van Aalst A., van Delft J., Nieuwenhuys B.E. // J. Catal. 1996. V. 161. P. 310.
  24. Busca G., Guidetti R., Lorenzelli V. // J. Chem. Soc. Faraday Trans. 1990. V. 86. № 6. P. 989.
  25. Schonnenbeck M., Cappus D., Klinkmann J. et al. // Surf. Sci. 1996. V. 347. P. 337

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (42KB)
3.

Baixar (480KB)
4.

Baixar (314KB)

Declaração de direitos autorais © Г.В. Панкина, А.Н. Харланов, П.А. Чернавский, 2023