Физикохимия процессов сольватации/ассоциации в системе водорослевая целлюлоза/наноцеллюлоза–ДМАА/LICL

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

В данной работе проведено реологическое исследование процесса сольватации водорослевой целлюлозы и наноцеллюлозы в среде диметилацетамида с добавкой хлорида лития как одного из приоритетных прямых растворителей. Установлено, что водорослевая целлюлоза в растворе способна образовывать пространственные структуры – катионные комплексы с диметилацетамидом, стабилизированные анионами хлора. Энергия активации данного процесса составляет 29.4–42.8 кДж/моль. Зависимости вязкости от концентрации указывают на наличие ассоциационных взаимодействий, наиболее интенсивно проявляющихся при концентрации целлюлозы/наноцеллюлозы в растворе >1.5%. Методом ротационной вискозиметрии определено, что растворы водорослевой целлюлозы/наноцеллюлозы с концентрацией 2.0% обладают псевдопластичными свойствами. Реология полученных растворов делает их перспективным исходным сырьем для создания нетканых материалов, гидро/аэрогелей биомедицинского назначения.

Полный текст

Доступ закрыт

Об авторах

К. Г. Боголицын

Северный (Арктический) федеральный университет им. М. В. Ломоносова; Федеральный исследовательский центр комплексного изучения Арктики им. Н. П. Лаверова УрО РАН

Автор, ответственный за переписку.
Email: k.bogolitsin@narfu.ru
Россия, Архангельск; Архангельск

А. Э. Паршина

Северный (Арктический) федеральный университет им. М. В. Ломоносова

Email: k.bogolitsin@narfu.ru
Россия, Архангельск

Д. А. Поломарчук

Северный (Арктический) федеральный университет им. М. В. Ломоносова

Email: k.bogolitsin@narfu.ru
Россия, Архангельск

Список литературы

  1. Siddhanta A.K.., Prasad, K., Meena, R. et al. // Bioresour. Technol. 2009. V. 100. № 24. P. 6669. https://doi.org/10.1016/j.biortech.2009.07.047.
  2. Siddhanta A.K., Chhatbar M.U., Mehta G.K., et al. // J. Appl. Phycol. 2011. V. 23. № 5. P. 919. https://doi.org/10.1007/s10811-010-9599-2.
  3. Koyama M., Sugiyama J., Itoh T. // Cellulose. 1997. V. 4. № 2. P. 147. https://doi.org/10.1023/A:1018427604670.
  4. Chen Y.W., Lee H.V., Juan J.C., Phang S.-M. // Carbohydr. Polym. 2016. V. 151. P. 1210. https://doi.org/10.1016/j.carbpol.2016.06.083.
  5. Mihranyan A. // J. Appl. Polym. Sci. 2011. V. 119, № 4. P. 2499. https://doi.org/10.1002/app.32959.
  6. Halib N, Perrone F., M. Čemažar M., et al. // Materials (Basel). 2017. V. 10. № 8. P. 1. https://doi.org/10.3390/ma10080977.
  7. Zanchetta E., Damergi E., Patel B., et al. // Algal Res. 2021. V. 56. P. 102288. https://doi.org/10.1016/j.algal.2021.102288.
  8. The Physiology of Microalgae / Ed. Borowitzka M.A., Beardall J., Raven J.A. Cham: Springer International Publishing, 2016. P. 47.
  9. Li S, Bashline L., Lei L., et al. // Arab. B. 2014. V. 12. article e0169. https://doi.org/10.1199/tab.0169.
  10. McNamara J.T., Morgan J.L.W., Zimmer J. // Annu. Rev. Biochem. 2015. V. 84. P. 895. https://doi.org/10.1146/annurev-biochem-060614-033930.
  11. Gardner K.H., Blackwell J. // Biopolymers. 1974. V. 13, № 10. P. 1975. https://doi.org/10.1002/bip.1974.360131005.
  12. Tsekos I. // J. Phycol. 1999. V. 35. № 4. P. 635. https://doi.org/10.1046/j.1529-8817.1999.3540635.x.
  13. Roberts A.W., Roberts E.M., Delmer D.P. // Eukaryot. Cell. 2002. V. 1. № 6. P. 847. https://doi.org/10.1128/EC.1.6.847-855.2002.
  14. Chan W.S., Kwok A.C.M., Wong J.T.Y. // Front. Microbiol. 2019. V. 10. P. 1. https://doi.org/10.3389/fmicb.2019.00546.
  15. Roberts A.W., Roberts E. Cellulose: Molecular and Structural Biology. Springer, 2007. P. 17.
  16. Алешина Л.А. и др. Структура и физико-химические свойства целлюлоз и нанокомпозитов на их основе. Петрозаводск: Изд-во ПетрГУ, 2014. 240 с.
  17. Bogolitsyn K.G., Ovchinnikov D.V., Kaplitsin P.A. et al. // Chem. Nat. Compd. 2017. V. 53. № 3. P. 533. https://doi.org/10.1007/s10600-017-2039-7.
  18. Henniges U., Kostic M., Borgards A. et al. // Biomacromolecules. 2011. V. 12. № 4. P. 871. https://doi.org/10.1021/bm101555q.
  19. Азаров В.И., Буров А.В., Оболенская А.В. Химия древесины и синтетических полимеров. Санкт-Петербург: СПбЛТА, 1999. 628 с.
  20. Терентьева Э.П., Удовенко Н.К., Павлова Е.А. Химия древесины, целлюлозы и синтетических полимеров. Санкт-Петербург: СПбГТУРП, 2014. 53 с.
  21. Henniges U., Schiehser S., Rosenau T., Potthast A.// ACS Symp. Ser. 2010. V. 1033. P. 165. https://doi.org/10.1021/bk-2010-1033.ch009.
  22. Hasani M., Henniges U., Idström A. et al. // Carbohydr. Polym. 2013. V. 98, № 2. P. 1565. https://doi.org/10.1016/j.carbpol.2013.07.001.
  23. Aulin C., Ahola S., Josefsson P., et al. // Langmuir. 2009. V. 25. № 13. P. 7675. https://doi.org/10.1021/la900323n.
  24. Gindl W., Emsenhuber G., Maier G., Keckes J. // Biomacromolecules. 2009. V. 10. № 5. P. 1315. https://doi.org/10.1021/bm801508e.
  25. Hassan M.L., Moorefield C.N., Kishore Kotta, Newkome G.R.// Polymer. 2005. V. 46. № 21. P. 8947. https://doi.org/10.1016/j.polymer.2005.06.028.
  26. Ramos L.A., Morgado D.L., El Seoud O.A., et al. // Cellulose. 2011. V. 18. № 2. P. 385. https://doi.org/10.1007/s10570-011-9496-0.
  27. Rao C.P., Balaram P., Rao C.N.P. // J. Chem. Soc. Trans. 1980. V. 76. P. 1008.
  28. Waghorne W.E., Ward A.J. I., Clune T.G., Cox B.G. // J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases. 1980. V. 76. P. 1131. https://doi.org/10.1039/f19807601131.
  29. Bello J., Haas D., Bello H.R. // Biochemistry. 1966. V. 5. № 8. P. 2539. https://doi.org/10.1021/bi00872a008.
  30. Balasubramanian D., Shaikh R. // Biopolymers. 1973. V. 12. № 7. P. 1639. https://doi.org/10.1002/bip.1973.360120715.
  31. Zhang C., Liu R., Xiang J. et al. // J. Phys. Chem. B. 2014. V. 118. № 31. P. 9507. https://doi.org/10.1021/jp506013c.
  32. McCormick C.L., Callais P.A., Hutchinson B.H. // Macromolecules. 1985. V. 18. № 12. P. 2394. https://doi.org/10.1021/ma00154a010.
  33. Morgenstern B., Kammer H.W., Berger B., et al. // Acta Polym. 1992. V. 43. № 6. P. 356. https://doi.org/10.1002/actp.1992.010430612.
  34. Yadav S., Shire S.J., Kalonia D.S. // J. Pharm. Sci. 2010. V. 99.№ 12. P. 4812. https://doi.org/10.1002/jps.
  35. Тагер А.А. Физико-химия полимеров. 4e изд. М.: Научный мир, 2007. 576 с.
  36. El Hamdaoui L., El Bouchti M., El Moussaouiti M. // Polym. Bull. 2018. V. 75. № 2. P. 769. https://doi.org/10.1007/s00289-017-2066-3.
  37. Тагер А.А. Физико-химия полимеров. М.: Химия, 1968. 536 с.
  38. Шрамм Г. Основы практической реологии и реометрии. Пер. с англ. М.: Колосс, 2003. 312 с.
  39. Уилкинсон У.Л. Неньютоновские жидкости. Гидромеханика, перемешивание и теплообмен. М.: Мир, 1964. 216 с.
  40. Астарита Д. Основы гидромеханики неньютоновских жидкостей. М.: Мир, 1978. 309 с.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Схема получения водорослевой целлюлозы и наноцеллюлозы.

Скачать (138KB)
3. Рис. 2. Механизм растворения целлюлозы в ДМАА/LiCl, предложенный a) МакКормиком и др. [32]N-dimethylacetamide (DMAc, б) Моргенштерном и др. [33].

Скачать (104KB)
4. Рис. 3. Логарифмическая зависимость динамической вязкости растворов водорослевой целлюлозы (ВЦ, слева) и наноцеллюлозы (ВНЦ, справа) от обратной температуры.

Скачать (136KB)
5. Рис. 4. Кривые течения растворов водорослевой целлюлозы.

Скачать (95KB)
6. Рис. 5. Графики зависимости кажущейся вязкости раствора водорослевой целлюлозы с концентрацией 2.0% от скорости сдвига при разных температурах.

Скачать (95KB)

© Российская академия наук, 2024