Поверхностное натяжение и адсорбция на границе пар–жидкость в системе метан–этан

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Методом молекулярной динамики проведены расчеты парожидкостного равновесия и поверхностного натяжения жидкость–пар для системы метан–этан. Показано хорошее согласие величины парахора для этана между молекулярной моделью и экспериментальными данными для диапазона температур 203–253 К и для давлений до 60 атм. Зависимость поверхностного натяжения смеси от давления в диапазоне 4–40 атм при температуре 213 К показывает уменьшение как поверхностного натяжения, так и разности плотностей между жидкостью и паром при увеличении давления и приближении к критическому локусу. Благодаря аппроксимации полученных для тех же условий профилей плотности можно также сделать вывод об увеличении ширины межфазной границы. Вычислено количество адсорбированного метана на поверхности исследуемой жидкой пленки. Получена зависимость молярной адсорбции метана от разности плотностей компонентов в жидкой и газовой фазах и ее аналитическое выражение в рамках теории Гиббса. Особенностями использованного подхода являются отсуствие необходимости в приближениях идеального газа и идеального раствора и использование только экспериментально получаемых данных в качестве входных. Полученные величины адсорбции метана хорошо соответствуют выведенной аналитической зависимости.

Полный текст

Доступ закрыт

Об авторах

Д. Ю. Ленев

Объединенный институт высоких температур Российской академии наук; Московский физико-технический институт

Автор, ответственный за переписку.
Email: lenev@phystech.edu
Россия, Москва, 125412; Москва, 117303

С. А. Захаров

Объединенный институт высоких температур Российской академии наук; Московский физико-технический институт

Email: lenev@phystech.edu
Россия, Москва, 125412; Москва, 117303

В. В. Писарев

Объединенный институт высоких температур Российской академии наук; Национальный исследовательский университет “Высшая школа экономики”

Email: lenev@phystech.edu
Россия, Москва, 125412; Москва, 101000

Список литературы

  1. Kalikmanov V.I. Nucleation Theory. Dordrecht: Springer, 2013. P. 8.
  2. Baidakov V.G., Kaverin A.M., Khotienkova M.N. // Fluid Phase Equilibria. 2013. V. 356. P. 90.
  3. Каверин А.М., Андбаева В.Н., Байдаков В.Г. // Журн.физ.химии. 2006. Т. 80. № 3. С. 495. [Kaverin A.M., Andbaeva V.N., Baidakov V.G. // Russ. J. Phys. Chem. A. 2006. V. 80. № 3. P. 413.]
  4. Товбин Ю.К. Поверхностное натяжение: механика, термодинамика и времена релаксации // Журн. физ. химии. 2018. Т. 92. № 12. С. 1902. https://doi.org/10.7868/S004445371806002X
  5. Baidakov V.G., Khotienkova M.N. // Fluid Phase Equilibria. 2016. V. 425. P. 402. https://doi.org/10.1016/j.fluid.2016.06.038
  6. Зайцева Е.С., Товбин Ю.К. // Журн.физ.химии. 2022.T. 96. № 10. С. 1411. doi: 10.31857/S0044453722100351 [Zaitseva, E.S., Tovbin, Y.K. // Russ. J. Phys. Chem. 2022. V. 96. P. 2088–2097.]
  7. Zakharov S., Pisarev V. // Lecture Notes in Computer Science. V. 14388. P. 59. https://doi.org/10.1007/978-3-031-49432-1_5
  8. Ленев Д.Ю., Норман Г.Э. // ТВТ. 2019. Т. 57. № 4. С. 534. [Lenev D.Yu., Norman G.E. // High Temp. 2019. V. 57. № 4. P. 490. https://doi.org/10.1134/S004036441904015X]
  9. Жуховицкий Д.И. // Журн. физ. химии. 2001. Т. 75. № 7. С. 1159. [Zhukhovitskii D.I. // Russ. J. Phys. Chem. A. 2001. V. 75. № 7. P. 1043.]
  10. Benet J., MacDowell L.G., and Menduiña C. // J. Chem. Eng. Data. 2010. V. 55. P. 5465.
  11. Pitakbunkate T., Blasingame T.A., Moridis G.J.et al. // Ind. Eng. Chem. Res. 2017. V. 56. № 40. P. 11634.
  12. Thompson A.P., Aktulga H.M., Berger R. et al. // Comp Phys Comm. 2022. V. 271. P. 10817.
  13. Martin M.G., Siepmann J.I. // J. Phys. Chem. B. 1998. V. 102. P. 2569.
  14. Marrink S.J., de Vries A.H., Mark A.E. // Ibid. 2004. V. 108. № . 2. P. 750.
  15. Shinoda W., Shiga M., Mikami M. // Phys. Rev. B. 2004. V. 69. P 134103.
  16. Allen M.P., Tildesley D.J. Computer Simulation of Liquids. Oxford Scholarship Online, 2017. 641 p.
  17. Baidakov V.G., Protsenko S.P. // J. Phys. Chem. C. 2008. V. 112. № 44. P. 17231.
  18. Бретшнайдер С. Свойства газов и жидкостей. Инженерные методы расчета. М.-Л.: Химия, 1966. С. 63.
  19. Escobedo J., Mansoori G.A. // AIChE Journal. 1996. V. 42. № 5. P. 1425.
  20. Kondratyuk N., Lenev D., Pisarev V. // J Chem. Phys. 2020. V. 152. № 19. P. 191104.
  21. Захаров С.А., Писарев В.В. // Матем. Моделирование. 2023. Т. 35. № 4. С. 51. https://doi.org/10.20948/mm-2023-04-03
  22. Kostenetskiy P.S., Chulkevich R.A., Kozyrev V.I. // J. Phys.: Conf. Ser. 2021. V. 1740. P. 012050.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Зависимости поверхностного натяжения от разности плотностей этана в жидкой и газовой фазах, полученные с помощью МД-моделирования чистого этана (квадраты) и в эксперименте [2] (круги). Цифры показывают температуру в К, при которой получена соответствующая точка.

Скачать (62KB)
3. Рис. 2. Зависимость поверхностного натяжения смеси метана и этана от доли метана в жидкой(треугольники) и газовой (круги) фазе для температуры 213 К. Цифры показывают давление соответствующей точки в атм.

Скачать (49KB)
4. Рис. 3. Часть профиля плотностей метана и этана при температуре 213 К и давлении 20 атм.

Скачать (69KB)
5. Рис. 4. Зависимость толщины границы раздела фаз D в смеси метана и этана, определенная по этану (круги) и метану (квадраты).

Скачать (50KB)
6. Рис. 5. Зависимости адсорбции метана на поверхности жидкой пленки, состоящей из метана и этана, от разности плотностей метана в жидкости и газе для температуры 213 К.

Скачать (72KB)

© Российская академия наук, 2024