Comparative Analysis of the Effect of Native and Polymeric β-Cyclodextrins on the Solubility and Membrane Permeability of Baricitinib

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A study is performed of the effect native and polymeric β-cyclodextrins have on the solubility and membrane permeability of baricitinib, a new generation immunomodulator. It is found that native and polymeric β-cyclodextrins exhibit the same solubilizing effect in relation to baricitinib, while their effect on the membrane permeability of the drug differs. The increased solubility of baricitinib is due to the formation of inclusion complexes that have the same stability but are enthalpy-entropy stabilized in native β-cyclodextrin and enthalpy stabilized in polymeric β-cyclodextrin. The effect cyclodextrins on baricitinib’s coefficients of permeability of through a model membrane is discussed in terms of complexation, changes in the viscosity of the medium, and the state of the water boundary layer near the membrane’s surface.

作者简介

E. Delyagina

Institute of the Chemistry of Solutions, Krestov Academy of Sciences; Ivanovo State University

Email: ivt@isc-ras.ru
153045, Ivanovo, Russia; 153000, Ivanovo, Russia

A. Garibyan

Institute of the Chemistry of Solutions, Krestov Academy of Sciences

Email: ivt@isc-ras.ru
153045, Ivanovo, Russia

I. Terekhova

Institute of the Chemistry of Solutions, Krestov Academy of Sciences

编辑信件的主要联系方式.
Email: ivt@isc-ras.ru
153045, Ivanovo, Russia

参考

  1. Aletaha D., Neogi T., Silman A.J. et al. // Arthritis Rheumatol. 2010. V. 62. P. 2569. https://doi.org/10.1002/art.27584
  2. Drug Approval Package: Olumiant (baricitinib). 2018. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2018/207924Orig1s000TOC.cfm
  3. Olumiant product information, European public assessment report. European Medicines Agency. https://www.ema.europa.eu/en/medicines/human/EPAR/olumiant#authorisation-details-section.
  4. Garibyan A.A., Delyagina E.S., Agafonov M.A. et al. // J. Mol. Lig. 2022. V. 360. P. 119548. https://doi.org/10.1016/j.molliq.2022.119548
  5. Alshetaili A.S. // Z. Phys. Chem. 2018. V. 233. https://doi.org/10.1515/zpch-2018-1323
  6. FDA Briefing, Arthritis Advisory Committee Meeting document, AAC Brief NDA 207924 (2018).
  7. Ansari M.J., Alschahrani S.M. // Saudi Pharm. J. 2019. V. 27. P. 491. https://doi.org/10.1016/j.jsps.2019.01.012
  8. Zheng X.-Q., Huang J.-F., Lin J.-L. et al. // Colloids Surf. B. 2021. V. 199. P. 111532. https://doi.org/10.1016/j.colsurfb.2020.111532
  9. Braga S.S. // Biomolecules. 2019. V. 9. P. 801. https://doi.org/10.3390/biom9120801
  10. Allahyari S., Trotta F., Valizadeh H. et al. // Expert Opin. Drug Deliv. 2019. V. 16. P. 467. https://doi.org/10.1080/17425247.2019.1591365
  11. Mura P. // Int. J. Pharm. 2020. V. 579. P. 119181. https://doi.org/10.1016/j.ijpharm.2020.119181
  12. Renard E., Deratani A., Volet G. et al. // Eur. Polum. J. 1997. V. 33. P. 49. https://doi.org/10.1016/S0014-3057(96)00123-1
  13. Di Cagno M., Nielsen T.T., Larsen K.L. et al. // Int. J. Pharm. 2014. V. 468. P. 258. https://doi.org/10.1016/j.ijpharm.2014.04.029
  14. Vartak R., Patki M., Menon S. et al. // Ibid. 2020. V. 589. P. 119863. https://doi.org/10.1016/j.ijpharm.2020.119863
  15. Zhang W., Gong X., Cai Y. et al. // Carbohydr. Polum. 2013. V. 95. P. 366. https://doi.org/10.1016/j.carbpol.2013.03.020
  16. Дружининская О.В., Смехова И.Е. // Разработка и регистрация лекарственных средств. 2017. Т. 20. № 3. С. 144.
  17. Amrhein J., Drynda S., Schlatt L. et al. // Int. J. Mol. Sci. 2020. V. 21. P. 6632. https://doi.org/10.3390/ijms21186632
  18. Higuchi T., Connors K. // Adv. Anal. Chem. Instrum. 1965. V. 4. P. 117.
  19. Dahan A., Miller J.M., Hoffman A. et al. // J. Pharm. Sci. 2010. V. 99. P. 2739–2749. https://doi.org/10.1002/jps.22033

补充文件

附件文件
动作
1. JATS XML
2.

下载 (122KB)
3.

下载 (69KB)
4.

下载 (93KB)
5.

下载 (36KB)
6.

下载 (24KB)
7.

下载 (74KB)
8.

下载 (45KB)

版权所有 © Е.С. Делягина, А.А. Гарибян, И.В. Терехова, 2023