Synthesis of Niobium η-Carbide Nb3(Fe,Al)3C by Mechanical Alloying in a Liquid Organic Medium
- 作者: Eryomina M.A.1, Lomayeva S.F.1
-
隶属关系:
- Udmurt Federal Research Center, Ural Branch, Russian Academy of Sciences
- 期: 卷 97, 编号 5 (2023)
- 页面: 680-684
- 栏目: СТРОЕНИЕ ВЕЩЕСТВА И КВАНТОВАЯ ХИМИЯ
- ##submission.dateSubmitted##: 27.02.2025
- ##submission.datePublished##: 01.05.2023
- URL: https://permmedjournal.ru/0044-4537/article/view/668741
- DOI: https://doi.org/10.31857/S0044453723050084
- EDN: https://elibrary.ru/MQNBMP
- ID: 668741
如何引用文章
详细
The η-carbide Nb3(Fe,Al)3C phase was synthesized for the first time by mechanical alloying of Nb, Al, and Fe in petroleum ether followed by annealing. The synthesis of carbide occurs due to carbon accumulated from the grinding medium. If mechanical alloying is performed using steel vials and balls, the composites based on η-carbide can be obtained without additional introduction of iron; contaminant iron is involved in the formation of Nb3(Fe,Al)3C.
作者简介
M. Eryomina
Udmurt Federal Research Center, Ural Branch, Russian Academy of Sciences
Email: mrere@mail.ru
426067, Izhevsk, Russia
S. Lomayeva
Udmurt Federal Research Center, Ural Branch, Russian Academy of Sciences
编辑信件的主要联系方式.
Email: mrere@mail.ru
426067, Izhevsk, Russia
参考
- Chaus A.S., Braèík M., Sahul M., Tittel V. // Metal Sci. Heat Treatment 2020. V. 62. № 7–8. P. 489. https://doi.org/10.1007/s11041-020-00590-5
- Zhan J.M., Bi H.Y., Li M.C. // Sci. China Tech. Sci. 2022. V. 65. P. 169. https://doi.org/10.1007/s11431-021-1865-7
- Malfliet A., Mompiou F., Chassagne F. et al. // Met. Mater. Trans. A. 2011. V. 42. № 3333. https://doi.org/10.1007/s11661-011-0745-5
- Shengda G., Tao S., Rui B. et al. // Rare Metal Mater. Eng. 2018. V. 47. № 7. P. 1986. https://doi.org/10.1016/S1875-5372(18)30169-3
- Kwon Y.J., Yoo J.S., Park S.K. et al. // J. Korean Soc. Heat Treat. 2018. V. 31. № 4. P. 165. https://doi.org/10.12656/jksht.2018.31.4.165
- Eryomina M.A., Lomayeva S.F., Kharanzhevsky E.V. et al. // Proc. Struct. Integrity. 2021. V. 32. P. 284. https://doi.org/10.1016/j.prostr.2021.09.040
- Michalchuk A.A.L., Boldyreva E.V., Belenguer A.M. et al. // Frontiers in Chemistry. 2021. V. 9. № 685789. https://doi.org/10.3389/fchem.2021.685789
- Konstanchuk I.G., Boldyrev V.V., Bokhonov B.B., Ivanov E.Yu. // Russ. J. Phys. Chem. A. 2001. V. 75. № 10. P. 1723.
- Reiffenstein E., Nowotny H., Benesovsky F. // Mh. Chem. 1965. V. 96. № 5. P. 1543. https://doi.org/10.1007/bf00902087
- Eryomina M.A., Lomayeva S.F., Lyalina N.V. et al. // Mater. Tod.: Proc. 2020. V. 25. P. 356. https://doi.org/10.1016/j.matpr.2019.12.089
- Eryomina M.A., Lomayeva S.F., Kharanzhevsky E.V. et al. // Int. J. Refract. Met. Hard Mater. 2022. V. 105. P. 105837. https://doi.org/10.1016/j.ijrmhm.2022.105837
- Shelekhov E.V., Sviridova T.A. // Met. Sci. Heat Treat. 2000. V. 42. P. 309. https://doi.org/10.1007/BF02471306
- Kaneyoshi T., Takahashi T., Motoyama M. // Scr. Metall. Mater. 1993. V. 29. P. 1547.
- Lomayeva S.F. // Phys. Met. Metallogr. 2007. V. 104. № 4. P. 388. https://doi.org/10.1134/S0031918X07100092
- Hellstern E., Schultz L., Bormann R., Lee D. // Appl. Phys. Lett. 1988. V. 53. P. 1399. https://doi.org/10.1063/1.99989
- Paul E., Swartzendruber L.J. // Bull. Alloy Phase Diagr. 1986. V. 7. P. 248.
- Jorda J.L., Flükiger R., Muller J. // J. Less-common Met. 1980. V. 75. P. 227. https://doi.org/10.1016/0022-5088(80)90120-4
- Komjathy S. // J. Less-Common Met.1960. V. 2. P. 466.
补充文件
