Rhodium electronic state in catalysts based on Rh/НZSM-5 for oxidative carbonylation of methane into acetic acid: effect of copper and zinc doping
- 作者: Shilina M.I.1, Khramov E.V.2, Batova T.I.3, Kolesnichenko N.V.3
-
隶属关系:
- Lomonosov Moscow State University
- National Research Center Kurchatov Institute
- Topchiev Institute of Petrochemical Synthesis
- 期: 卷 99, 编号 2 (2025)
- 页面: 309-318
- 栏目: ФИЗИЧЕСКАЯ ХИМИЯ ДИСПЕРСНЫХ СИСТЕМ И ПОВЕРХНОСТНЫХ ЯВЛЕНИЙ
- ##submission.dateSubmitted##: 19.06.2025
- ##submission.datePublished##: 20.05.2025
- URL: https://permmedjournal.ru/0044-4537/article/view/685281
- DOI: https://doi.org/10.31857/S0044453725020172
- EDN: https://elibrary.ru/DDBUGV
- ID: 685281
如何引用文章
详细
Diffuse reflectance infrared Fourier transform spectroscopy of adsorbed carbon monoxide is used along with X-ray absorption spectroscopy to study the effect a second alloying metal (Zn, Cu) has on the electronic state and local structure of rhodium on the surfaces of Rh/HZSM-5 zeolite catalyst. It is established that introducing copper and zinc helps improve the stability of rhodium toward aggregation (the formation of clusters) under conditions of the oxidative carbonylation of methane into acetic acid. Compared to monometallic catalyst Rh/HZSM-5, where single atom rodium sites are partially aggregated into clusters, the proportion of Rh° is halved in the case of Rh–Zn/HZSM-5, and Rh clustering does not occur in the case of Rh‒Cu/HZSM-5. The stabilizing effect of Cu is due to the interaction between copper and rhodium cations on the surface of zeolite.
全文:

作者简介
M. Shilina
Lomonosov Moscow State University
Email: batova.ti@ips.ac.ru
Faculty of Chemistry
俄罗斯联邦, Moscow, 119991E. Khramov
National Research Center Kurchatov Institute
Email: batova.ti@ips.ac.ru
俄罗斯联邦, Moscow, 123098
T. Batova
Topchiev Institute of Petrochemical Synthesis
编辑信件的主要联系方式.
Email: batova.ti@ips.ac.ru
俄罗斯联邦, Moscow, 119991
N. Kolesnichenko
Topchiev Institute of Petrochemical Synthesis
Email: batova.ti@ips.ac.ru
俄罗斯联邦, Moscow, 119991
参考
- Kumar P., Al-Attas T.A., Hu J., Kibria M.G. // ACS Nano. 2022. V. 16. P. 8557. https://doi.org/10.1021/acsnano.2c02464
- Shi Y.J., Zhou Y.W., Lou Y. et al. // Adv. Sci. 2022. V. 9. P. 2201520. https://doi.org/10.1002/advs.202201520
- Moteki T., Tominaga N., Ogura M. // Appl. Cat. B: Env. 2022. V. 300. P. 120742. https://doi.org/10.1016/j.apcatb.2021.120742
- Oda A., Horie M., Murata N. et al. // Catal. Sci. Technol. 2022. V. 12. P. 5488. https://doi.org/10.1039/d2cy01471h
- Kou Z., Zang W., Wang P. et al. // Nanoscale Horiz. 2020. V. 5. P. 757. https://doi.org/10.1039/D0NH00088D
- Ji Sh., Chen Y., Wang X. et al. // Chem. Rev. 2020. V. 120. P. 11900. https://doi.org/10.1021/acs.chemrev.9b00818
- Ye Ch., Zhang N., Wang D., Li Y. // Chem. Commun. 2020. V. 56. P. 7687. https://doi.org/10.1039/D0CC03221B
- Xiong H., Datye A.K., Wang Y. // Adv. Mater. 2021. V. 33. P. 2004319. https://doi.org/10.1002/adma.202004319
- Alvarez-Galvan C., Melian M., Ruiz-Matas L. et al. // Front. Chem. 2019. V. 7. P. 104. https://doi.org/10.3389/fchem.2019.00104
- Hou Y., Nagamatsu Sh., Asakura K. et al. // Commun. Chem. 2018. V. 1. P. 41. https://doi.org/10.1038/s42004-018-0044-9
- Prieto G., Zečevic J., Friedrich H. et al. // Nat. Mater. 2013. V. 12. P. 34. https://doi.org/10.1038/nmat3471
- Feng S., Song X., Ren Zh., Ding Y. // Ind. Eng. Chem. Res. 2019. V. 58. P. 4755. https://doi.org/10.1021/acs.iecr.8b05402
- Batova T.I., Stashenko A.N., Obukhova T.K. et al. // Micropor. Mesopor. Mater. 2023. V. 366. P. 112953. https://doi.org/10.1016/j.micromeso.2023.112953
- Pappas D.K., Borfecchia E., Dyballa M. et al. // Chem. Cat. Chem. 2019. V. 11. P. 621. https://doi.org/10.1002/cctc.201801542
- Zhang P., Yang X., Hou X. et al. // Catal. Sci. Technol. 2019. V. 9. P. 6297. https://doi.org/10.1039/C9CY01749F
- Mahyuddin M.H., Tanaka S., Shiota Y., Yoshizawa K. // Bull. Chem. Soc. Jpn. 2020. V. 93. P. 345. https://doi.org/10.1246/bcsj.20190282
- Wang S., Guo Sh., Luo Y. et al. // Catal. Sci. Technol. 2019. V. 9. P. 6613. https://doi.org/10.1039/C9CY01803D
- Matsubara H., Tsuji E., Moriwaki Y. et al. // Catal. Lett. 2019. V. 149. P. 2627. https://doi.org/10.1007/s10562-019-02855-y
- Chernyshov A.A., Veligzhanin A.A., Zubavichus Y.V. // Nucl. Instrum. Methods Phys. Res. A. 2009. T. 603. P. 95. https://doi.org/10.1016/j.nima.2008.12.167
- Newville M. // J. Synchrotron Radiat. 2001. V. 8. P. 96. https://doi.org/10.1107/S0909049500016290
- Kolesnichenko N.V., Batova T.I., Stashenko A.N. et al. // Microporous Mesoporous Mater. 2022. V. 344. P. 112239. https://doi.org/10.1016/j.micromeso.2022.112239
- Ivanova E., Mihaylov M., Thibault-Starzyk F. et al. // Catal. 2005. V. 236. P. 168. https://doi.org/10.1016/j.jcat.2005.09.017
- Hadjiivanov K., Ivanova E., Dimitrov L., Knözinger H. // J. Molec. Struct. 2003. V. 661–662. P. 459. https://doi.org/10.1016/j.molstruc.2003.09.007
- Osuga R., Saikhantsetseg B., Yasuda S. et al. // Chem. Commun. 2020. V. 56. P. 5913. https://doi.org/10.1039/D0CC02284E
- Davydov A. Edited by Sheppard N. Molecular Spectroscopy of Oxide Catalyst Surfaces. England: John Wiley & Sons Ltd, Chichester, 2003. P. 668. https://doi.org/10.1016/s1351-4180(03)01049-3
- Hadjiivanov K.I., Vayssilov G.N. // Adv. Catal. 2002. V. 47. P. 307. http://dx.doi.org/10.1016/0920-5861(95)00163-8
- Asokan C., Thang H., Pacchioni G., Christopher P. // Catal. Sci. Technol. 2020. V. 10. P. 1597. https://doi.org/10.1039/D0CY00146E
- Matsubu J.C., Yang V.N., Christopher P. // J. Am. Chem. Soc. 2015. V. 137. P. 3076. https://doi.org/10.1021/ja5128133
- Шилина М.И., Обухова Т.К., Батова Т.И., Колесниченко Н.В. // Журн. физ. химии. 2023. Т. 97. № 7. С. 944. https://doi.org/10.31857/S0044453723070269 [Shilina M.I., Obukhova T.K., Batova T.I., Kolesnichenko N.V. // Russ. J. Phys. Chem. A. 2023. V. 97. № 7. P. 1387. https://doi.org/10.1134/S0036024423070269]
- Субботин А.Н., Жидомиров Г.М., Субботина И.Р., Казанский В.Б. // Кинетика и катализ. 2013. Т. 54. № 6. С. 786. https://doi.org/10.7868/S0453881113060130 [Subbotin A.N., Zhidomirov G.M., Subbotina I.R., Kazansky V.B. // Kinet. Catal. 2013. V. 54. № 6. Р. 744. https://doi.org/10.1134/s002315841306013x]
- Palomino G.T., Fisicaro P., Bordiga S. et al. // J. Phys. Chem. B. 2000. V. 104. P. 4064. https://doi.org/10.1021/jp993893u
- Ikuno T., Grundner S., Jentys A. et al. // J. Phys. Chem. C. 2019. V. 123. P. 8759. https://doi.org/10.1021/acs.jpcc.8b10293
- Sushkevich V.L., van Bokhoven J.A. // Chem. Commun. 2018. V. 54. P. 7447. https://doi.org/10.1039/c8cc03921f
- Lamberti C., Groppo E., Spoto G. et al. // Adv. Catal. 2007. V. 51. P. 1. https://doi.org/10.1016/S0360-0564(06)51001-6
- Ivanin I.A., Udalova O.V., Kaplin I.Yu., Shilina M.I. // Applied Surface Science. 2024. V. 655. P. 159577. https://doi.org/10.1016/j.apsusc.2024.159577
- Skinner W.M., Prestidge C.A., Smart R.St.C. // Surf. Interf. Anal. 1996. V. 24. P. 620. https://doi.org/10.1002/(SICI)1096-9918(19960916)24:9<620:: AID-SIA151>3.0.CO;2-Y
- Carrasco E., Oujja M., Sanz M. et al. // Microchem J. 2018. V. 137. P. 381. https://doi.org/10.1016/j.microc.2017.11.014
补充文件
