Introduction of cationizing agents in soft ionization processes of short-chain peptides: laser desorption and electrospraying
- 作者: Kuznetsova E.S.1, Pytskii I.S.1, Buryak A.K.1
-
隶属关系:
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences
- 期: 卷 99, 编号 2 (2025)
- 页面: 324-330
- 栏目: ФИЗИЧЕСКАЯ ХИМИЯ ПРОЦЕССОВ РАЗДЕЛЕНИЯ. ХРОМАТОГРАФИЯ
- ##submission.dateSubmitted##: 19.06.2025
- ##submission.datePublished##: 20.05.2025
- URL: https://permmedjournal.ru/0044-4537/article/view/685283
- DOI: https://doi.org/10.31857/S0044453725020199
- EDN: https://elibrary.ru/DCWKVN
- ID: 685283
如何引用文章
详细
A mass spectrometric study of ionization processes of short peptides of triglycine, alanylglutamine, and prolylleucine by electrospray ionization (ESI) and surface-activated laser desorption/ionization (SALDI) methods in the presence of copper sulfate crystalline hydrate is performed. It is shown that during ESI ionization, the presence of copper ions in the solution initiates the aggregation of peptide molecules with the formation of large associates of up to 7-8 peptide molecules. The influence of the nature of peptides on the nature of ionization processes is studied. At the same time, competitive cationization of peptide molecules by copper ions with the formation of an M+Cu+ ion occurs during ionization by SALDI method. Peptide fragmentation and copper cationization of decarboxylation products are also typical.
全文:

作者简介
E. Kuznetsova
A. N. Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences
编辑信件的主要联系方式.
Email: eskuznetsova8@yandex.ru
俄罗斯联邦, Moscow, 119071
I. Pytskii
A. N. Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences
Email: eskuznetsova8@yandex.ru
俄罗斯联邦, Moscow, 119071
A. Buryak
A. N. Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences
Email: eskuznetsova8@yandex.ru
俄罗斯联邦, Moscow, 119071
参考
- Budimir N., Blais J.-Cl., Fournier F., Tabet J.-Cl. // Rapid Commun. Mass Spectrom. 2006. V. 20. P. 680. https://doi.org/10.1002/rcm.2363
- Chen Y., Chen H., Aleksandrov A., Orlando T.M. // J. Phys. Chem. C. 2008. V. 112. № 17. P. 6953. https://doi.org/10.1021/jp077002r
- Cohen L.H., Gusev A.I. // Anal. Bioanal. Chem. 2002. V. 373. P. 571. https://doi.org/10.1007/s00216-002-1321-z
- Karas M., Krüger R. // Chem. Rev. 2003. V. 103. № 2. P. 427. https://doi.org/10.1021/cr010376a
- Lin L., Weng C., Chen Q. // Nucl. Instrum. Methods Phys. Res. B. V. 414. № 1. P. 79.
- Chen Y., Chen H., Aleksandrov A., Orlando T.M. // J. Phys. Chem. C. 2008. V. 112. № 17. P. 6953. https://doi.org/10.1021/jp077002r
- Pytskii I.S., Kuznetsova E.S., Buryak A.K. // Colloid Journal. 2018. № 80. P. 427. https://doi.org/10.1134/S1061933X18040105
- Pytskii I.S., Kuznetsova E.S., Buryak A.K. // Protection of Metals and Physical Chemistry of Surfaces. 2020. № 56. P. 272. https://doi.org/10.1134/S2070205120020203
- Xinyao Ju, Shuzhen Cheng, Han Li et al. // Food Chemistry. 2022. V. 390. https://doi.org/10.1016/j.foodchem.2022.133146
- Iavorschi M., Lupăescu A., Darie-Ion L. et al. // Pharmaceuticals. 2022. V. 15(9). https://doi.org/10.3390/ph15091096
补充文件
