p-Regularity Theory and the Existence of a Solution to a Boundary Value Problem Continuously Dependent on Boundary Conditions

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

For a given boundary value problem, the existence of a solution depending continuously on the boundary conditions is analyzed. Previously, such a fact has been known only for the Cauchy problem, which is a classical result in the theory of differential equations. We prove a similar result for boundary value problems in the case when they are p-regular. In the general case, this result does not hold. Several implicit function theorems are proved in the degenerate case, which is a development of p-regularity theory concerning the existence of a solution to nonlinear differential equations. The results are illustrated by an example of a classical boundary value problem, namely, a degenerate Van der Pol equation is considered, for which the existence of a solution depending continuously on the boundary conditions of the perturbed problem is proved.

Авторлар туралы

Yu. Evtushenko

Federal Research Center “Computer Science and Control,” Russian Academy of Sciences; Moscow Institute of Physics and Technology (National Research University)

Email: yuri-evtushenko@yandex.ru
119333, Moscow, Russia; 141701, Dolgoprudnyi, Moscow oblast, Russia

B. Medak

Faculty of Exact and Natural Sciences, Siedlce University

Email: prof.tretyakov@gmail.com
08-110, Siedlce, Poland

A. Tret’yakov

Federal Research Center “Computer Science and Control,” Russian Academy of Sciences; System Research Institute, Polish Academy of Sciences; Faculty of Exact and Natural Sciences, Siedlce University

Хат алмасуға жауапты Автор.
Email: prof.tretyakov@gmail.com
119333, Moscow, Russia; 01-447, Warsaw, Poland; 08-110, Siedlce, Poland

Әдебиет тізімі

  1. Измаилов А.Ф., Третьяков А.А. Фактор-анализ нелинейных отображений. М.: Наука, 1994.
  2. Измаилов А.Ф., Третьяков А.А. 2-регулярные решения нелинейных задач: теория и численные методы. М.: Наука, 1999.
  3. Marsden J.E., Tret’yakov A.A. Factor analysis of nonlinear mappings: p-regularity theory // Communications on Pure & Applied Analysis. 2003. V. 2. № 4. P. 425.
  4. Medak B., Tret’yakov A.A. Existence of periodic solutions to nonlinear p-regular boundary value problem // Boundary Value Problems. 2015. Art. № 91. P. 1–24.
  5. Медак Б., Третьяков А.А. Теория -регулярности. Анализ и приложения. М.: Физматлит, 2017.
  6. Michael E.A. Continuous selector // Ann. Math. 1956. V. 64. P. 562–580.
  7. Третьяков А.А. Теорема о неявной функции в вырожденных задачах // Успехи матем. наук. 1987. Т. 42. № 5. С. 215–216.
  8. Brezhneva O.A., Tret’yakov A.A. Implicit function theorems for nonregular mappings in Banach spaces. Exit from singularity // Banach Spaces and Their Applications in Analysis. 2007. P. 285–302.
  9. Иоффе А.Д., Тихомиров В.М. Теория экстремальных задач. М.: Наука, 1974.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Ю.Г. Евтушенко, Б. Медак, А.А. Третьяков, 2023