Modeling of reflected ultrasonic fields in composed samples

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Ultrasonic nondestructive testing involves the study of propagation, reflection and refraction patterns of elastic waves excited by contact or non-contact piezoelectric transducers in the inspected object. The finite element modeling usually requires high computational costs and additional postprocessing to select individual waves from the total solution. When probing joints of homogeneous materials, such as turbine blades made of heat-resistant monocrystalline alloys, the joint boundary is low-contrast, and the reflected signals are relatively weak. This causes additional difficulties for their separation from the total wave field and correct interpretation of the information they bring. To solve this problem, explicit asymptotic representations for reflected and transmitted waves in a two-layer elastic half-space with a surface source are proposed in the present work, which allow fast parametric analysis. They can be used to analyze ultrasonic probing data, for example, to estimate the state of the junction zone or to determine the mutual orientation of the crystals’ principal axes.

About the authors

E. V. Glushkov

Kuban State University

Author for correspondence.
Email: evg@math.kubsu.ru

Institute for Mathematics, Mechanics and Informatics

Russian Federation, 350040 Krasnodar, Stavropolskaya str., 149

N. V. Glushkova

Kuban State University

Email: nvg@math.kubsu.ru

Institute for Mathematics, Mechanics and Informatics

Russian Federation, 350040 Krasnodar, Stavropolskaya str., 149

A. A. Tatarkin

Kuban State University

Email: tiamatory@gmail.com

Institute for Mathematics, Mechanics and Informatics

Russian Federation, 350040 Krasnodar, Stavropolskaya str., 149

O. A. Ermolenko

Kuban State University

Email: o.ermolenko.a@gmail.com

Institute for Mathematics, Mechanics and Informatics

Russian Federation, 350040 Krasnodar, Stavropolskaya str., 149

References

  1. Reed R.C. The superalloys: fundamentals and applications. Cambridge: Cambridge University Press, 2006.
  2. Lane C. Wave Propagation in Anisotropic Media / In: The Development of a 2D Ultrasonic Array Inspection for Single Crystal Turbine Blades. Springer Theses. Cham: Springer, 2014.
  3. Giurgiutiu V. Structural health monitoring with piezoelectric wafer active sensors. UK, Oxford: Elsevier Academic Press, 2014. P. 1024.
  4. Pyankov V.A. Pyankov I.N. Akusticheskiye metody kontrolya lopatok gazoturbinnykh dvigateley (Acoustic inspection methods of turbine blades of gas-turbine engines) // V mire nerazrushayushchego kontrolya. 2019. V. 22. No 1. (83). P. 36—44.
  5. Ermolov I.N. Teoriya i praktika ul’trazvukovogo kontrolya (Theory and practice of ultrasonic testing). Moscow: Mashinostroyeniye, 1981. 240 p.
  6. Danilov V.N. On the calculation of characteristics of echo signals of transverse and longitudinal waves from reflectors with flat surfaces // Defectoskopyia. 2010. No. 1. P. 26—41.
  7. Gurvich I.I., Nomokonov V.P. Seysmorazvedka. Spravochnik geofizika (Seismic exploration. Geophysics handbook). Moscow: Nedra, 1981. 464 p.
  8. Brekhovskikh L.M. Waves in Layered Media. 2nd Edition. New York: Academic Press, 1980.
  9. Vorovich I.I., Babeshko V.A. Dinamicheskiye smeshannyye zadachi teorii uprugosti dlya neklassicheskikh oblastey (Dynamic Mixed Problems on Theory of Elasticity for Non-Classical Fields). Moscow: Nauka, 1979. 320 p.
  10. Babeshko V.A., Glushkov E.V., Glushkova N.V. Analysis of wave fields generated in a stratified elastic half-space by surface sources // Sov. Phys. Acoust. (USA). 1986. V. 32. No. 3. P. 223—226.
  11. Glushkov E.V., Glushkova N.V., Krivonos A.S. The excitation and propagation of elastic waves in multilayered anisotropic composites // Journal of Applied Mathematics and Mechanics. 2010. No. 74. P. 297—305.
  12. Glushkov E., Glushkova N., Eremin A. Forced wave propagation and energy distribution in anisotropic laminate composites // J. Acoust. Soc. Am. 2011. V. 129 (5). P. 2923—2934.
  13. Sveshnikov A.G. Printsip predel’nogo pogloshcheniya dlya volnovoda (The limit absorption principle for a waveguide) // Dokl. Akad. Nauk SSSR. 1951. V. 80. No. 3. P. 345—347.
  14. Glushkov E.V., Glushkova N.V., Kiselev O.N. Body wave asymptotics for an anisotropic elastic half-space with a surface source / 2023 Days on Diffraction (DD), St. Petersburg, Russian Federation. 2023. P. 78—82.
  15. Merkulov L.G., Yakovlev L.A. Some features of propagation and reflection of ultrasound in monocrystals // Sov. Phys. Acoust. (USA). 1962. V. 8. No. 1. P. 99—106.
  16. Auld B.A. Acoustic fields and waves in solids. New York: Wiley, 1973. 423 p.
  17. Goldstein R.V., Gorodtsov V.A., Lisovenko D.S., Volkov M.A. Negative poisson’s ratio for cubic crystals and nano/microtubes // Physical Mesomechanics. 2014. V. 17. No. 2. P. 97—115.
  18. Demin A.I., Volkov M.A., Gorodtsov V.A., Lisovenko D.S. Auxetics among two-layered composites made of cubic crystals. analytical and numerical analysis // Mechanics of Solids. 2023. V. 58. No. 1. P. 140—152.
  19. Fedoryuk M.V. Metod perevala (The saddle-point method). Moscow: Nauka, 1977. 368 p.
  20. Brekhovskikh L.M., Godin O.A. Akustika sloistykh sred (Acoustics of layered media). Moscow: Nauka, 1989. 411 p.
  21. Razygraev N.P. Fizika, terminologiya i tekhnologiya v ul’trazvukovoy defektoskopii golovnymi volnami (Physics, terminology and technology in ultrasonic testing with head waves) // Defectoskopiya. 2020. No. 9. P. 3—19.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences