Anisotropy of acoustic properties in thin-sheet rolled low-carbon manganese steel
- Authors: Murav’ev V.V.1,2, Murav’eva O.V.1,2, Volkova L.V.1, Kolpakov K.V.1, Devyaterikov D.I.3, Kravtsov E.A.3,4
-
Affiliations:
- Kalashnikov Izhevsk State Technical University
- Udmurt Federal Research Center, Ural Branch, Russian Academy of Sciences
- Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences
- Ural Federal University
- Issue: No 11 (2024)
- Pages: 15-29
- Section: Acoustic methods
- URL: https://permmedjournal.ru/0130-3082/article/view/649293
- DOI: https://doi.org/10.31857/S0130308224110021
- ID: 649293
Cite item
Abstract
Thin-sheet rolled low-carbon manganese steel 09G2S with a thickness of 0,8 mm which has strong property anisotropy due to texture and residual stresses, was experimentally studied using SH-wave with horizontal polarization and zero-order symmetric Lamb wave mode. The velocities of elastic wave propagation along the sheet were analyzed as their direction and polarization varied relative to the rolling direction in the range of angles from 0 to 180 degrees. The excitation and reception of normal waves in the sheet were carried out by piezoelectric transducers with dry point contact, providing tangential force application. The results of the research on the anisotropy of acoustic properties, X-ray structural analysis of residual stresses and inverse pole figures, and metallographic studies were obtained.
About the authors
V. V. Murav’ev
Kalashnikov Izhevsk State Technical University; Udmurt Federal Research Center, Ural Branch, Russian Academy of Sciences
Author for correspondence.
Email: ludmila396@istu.ru
Russian Federation, Udmurt Republic, 426069 Izhevsk, Studencheskaya str., 7; 426067 Izhevsk, st. them. Tatyana Baramzina, 34
O. V. Murav’eva
Kalashnikov Izhevsk State Technical University; Udmurt Federal Research Center, Ural Branch, Russian Academy of Sciences
Email: ludmila396@istu.ru
Russian Federation, Udmurt Republic, 426069 Izhevsk, Studencheskaya str., 7; 426067 Izhevsk, st. them. Tatyana Baramzina, 34
L. V. Volkova
Kalashnikov Izhevsk State Technical University
Email: ludmila396@istu.ru
Russian Federation, Udmurt Republic, 426069 Izhevsk, Studencheskaya str., 7
K. V. Kolpakov
Kalashnikov Izhevsk State Technical University
Email: ludmila396@istu.ru
Russian Federation, Udmurt Republic, 426069 Izhevsk, Studencheskaya str., 7
D. I. Devyaterikov
Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences
Email: ludmila396@istu.ru
Russian Federation, 620108 Ekaterinburg, S. Kovalevskaya str., 18
E. A. Kravtsov
Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences; Ural Federal University
Email: ludmila396@istu.ru
Russian Federation, 620108 Ekaterinburg, S. Kovalevskaya str., 18; 620002 Ekaterinburg, Mira str., 19
References
- Ginzel E. CIVA as an Aid to Understanding Ultrasonic Anisotropy in Steel // e-Journal of Nondestructive Testing. 2024. No. 3 (29). doi: 10.58286/29306
- Zuo P., Fan Z. Modal properties of elastic surface waves in the presence of material anisotropy and prestress // J. Sound Vib. 2020. V. 485. P. 115588. doi: 10.1016/j.jsv.2020.115588
- Johnson Ward L., Heyliger Paul R., Benzing, Jake T., Kafka Orion L., Moser Newell H., Harris Derek, Iten Jeremy, Hrabe Nik W. Evidence for contributions of lack-of-fusion defects and dislocations to acoustic nonlinearity and loss in additively manufactured aluminum // NDT E Int. 2024. V. 143. P. 103068. doi: 10.1016/j.ndteint.2024.103068
- Miao H., Li F. Shear horizontal wave transducers for structural health monitoring and nondestructive testing: A review // Ultrasonics. 2021. V. 114. P. 106355. doi: 10.1016/j.ultras.2021.106355
- Parra-Raad J., Khalili P., Cegla F. Shear waves with orthogonal polarisations for thickness measurement and crack detection using EMATs // NDT E Int. 2020. V. 111. P. 102212. doi: 10.1016/j.ndteint.2019.102212
- Parra-Raad J., Lan B., Cegla F. Orthogonally polarised shear waves for evaluating anisotropy and cracks in metals // NDT E Int. 2021. V. 121. P. 102440. doi: 10.1016/j.ndteint.2021.102440
- Stepinski T., Mańka M., Martowicz A. Interdigital lamb wave transducers for applications in structural health monitoring // NDT E Int. 2017. V. 86. P. 199—210. doi: 10.1016/j.ndteint.2016.10.007
- Holloway P., Ginzel E. Calibration for Anisotropic Effects on Shear Wave Velocity for Improvements of Weld Inspections in TMCP Steels // e-Journal of Nondestructive Testing. 2021.
- Ivanova Y. Application of Ultrasonic Methods for Evaluation the Anisotropy of Materials // The Eurasia Proceedings of Science Technology Engineering and Mathematics. 2023. V. 22. P. 258—267. doi: 10.55549/epstem.1350957
- Malmström M., Jansson A., Hutchinson B. Application of Laser-Ultrasonics for Evaluating Textures and Anisotropy // Applied Sciences. 2022. V. 12. No. 20. P. 10547. doi: 10.3390/app122010547
- Luo Zhongbing, Jin Shijie, Zou Longjiang, Zhu Xiaolei, Lin Li. Gain-scale ultrasonic properties measurement of cast austenitic stainless steel // Measurement. 2020. V. 151. P. 107231. doi: 10.1016/j.measurement.2019.107231
- Alabi D.J., Skarlatos A., Riding K.A., Reboud C., Harley J.B. Magnetic anisotropy quantification in steel fiber reinforced materials // NDT & E International. 2024. V. 141. P. 102995. doi: 10.1016/j.ndteint.2023.102995
- Simonetti F., Alqaradawi M.Y. Guided ultrasonic wave tomography of a pipe bend exposed to environmental conditions: A long-term monitoring experiment // NDT & E International. 2019. V. 105. P. 1—10. doi: 10.1016/j.ndteint.2019.04.010
- Willey C.L., Simonetti F., Nagy P.B., Instanes G. Guided wave tomography of pipes with high-order helical modes // NDT E Int. 2014. V. 65. P. 8—21. doi: 10.1016/j.ndteint.2014.03.010
- Trushkevych O., Dixon S., Tabatabaeipour M., Potter M.D.G., MacLeod C., Dobie G., Edwards R.S. Calibration-free SH guided wave analysis for screening of wall thickness in steel with varying properties // NDT & E International. 2023. V. 135. P. 102789. doi: 10.1016/j.ndteint.2023.102789
- Ratassepp M., Rao J., Fan Z. Quantitative imaging of Young’s modulus in plates using guided wave tomography // NDT & E International. 2018. V. 94. P. 22—30. doi: 10.1016/j.ndteint.2017.09.016
- Williams C.L., Lear M.H., Shokouhi P. A review of the microstructural contributions to the acoustic nonlinearity parameter measured with longitudinal and Rayleigh wave second harmonic generation in metals // NDT & E International. 2024. V. 142. P. 103027. doi: 10.1016/j.ndteint.2023.103027
- Wang Yingzhu, Zhu Xupeng, Gong Yunxuan, Liu Nanxi, Li Zuohua, Long Zhili, Teng Jun. Combination of transverse and longitudinal ultrasonic waves for plane stress measurement of steel plates // Applied Acoustics. 2022. V. 188. P. 108500. doi: 10.1016/j.apacoust.2021.108500
- Czink S., Dietrich S., Schulze V. Ultrasonic evaluation of elastic properties in laser powder bed fusion manufactured AlSi10Mg components // NDT E Int. 2022. V. 132. P. 102729. doi: 10.1016/j.ndteint.2022.102729
- Du H., Turner J.A., Hu P. Characterization of microstructural anisotropy in pearlitic steel with mode-converted ultrasonic scattering // NDT & E International. 2019. V. 102. P. 189—193. doi: 10.1016/j.ndteint.2018.11.016
- Hong Xiaobin, Yue Jikang, Zhang Bin, Liu Yuan. A time-of-flight based weighted imaging method for carbon fiber reinforced plastics crack detection using ultrasound guided waves // NDT & E International. 2023. V. 137. P. 102855. doi: 10.1016/j.ndteint.2023.102855
- Anisimov V.A., Katorgin B.I., Kutsenko A.N., Malakhov V.P., Rudakov A.S., Chvanov V.K. Directory Non-Destructive Control / Book 1. Acoustic tensometry. Ed. by V.V. Klyuev. 2006. 98 p.
- Naumenko V.V., Smetanin K.S., Muntin А.V., Baranova O.А., Kovtunov S.V. Features of the formation of structure and mechanical properties in rolled products of various thicknesses from low-carbon microalloyed steel produced by casting and rolling complex // Izv. Ferr. Metall. 2021. V. 64. No. 9. P. 669—678. doi: 10.17073/0368-0797-2021-9-669-678
- Mishakin V.V., Klyushnikov V.A., Gonchar A.V. Relation between the deformation energy and the Poisson ratio during cyclic loading of austenitic steel // Technical Physics. 2015. V. 60. No. 5. P. 665—668. doi: 10.1134/S1063784215050163
- Grishchenko A.I., Modestov V.S., Polyanskiy V.A., Tretyakov D.A., Shtukin L.V. Experimental investigation of the acoustic anisotropy field in the sample with a stress concentrator // St. Petersburg Polytechnical University Journal: Physics and Mathematics. 2017. No. 3. P. 77—82. doi: 10.1016/j.spjpm.2017.02.005
- Kolikov A.P., Ti S.O., Sidorova T.Y. Experimental and mathematical methods for calculation of residual stresses in production of welded pipes // Chernye Metally. 2021. No. 7. P. 41—49. doi: 10.17580/chm.2021.07.03
- Pogulyaev S.I., Maksyutin I.V., Popkov A.S. Influence of Uneven Distribution of Residual and Operational Stresses in Pipes on the Occurrence of Stress Corrosion Cracking Defects in Them // Scientific and Technical Collection: News of Gas Science. 2022. V. 1. No. 50. P. 120—132.
- Gorkunov E.S., Zadvorkin S.M., Khudorozhkova Yu.V., Korzunin G. S. Effect of the Crystallographic Texture Type on the Anisotropy of the Magnetic Leakage Field Parameters of Steel Plates // Physical Mesomechanics. 2019. V. 22. No. 3. P. 54—64 doi: 10.24411/1683-805X-2019-13006
- Dixon S., Fletcher M.P., Rowlands G. The accuracy of acoustic birefringence shear wave measurements in sheet metal // J. Appl. Phys. 2008. V. 104. No. 11. doi: 10.1063/1.3033395
- Belyaev Alexander K., Polyanskiy Vladimir A., Semenov Artem S., Tretyakov Dmitry A., Yakovlev Yuriy A. Investigation of the correlation between acoustic anisotropy, damage and measures of the stress-strain state // Procedia Structural Integrity. 2017. V. 6. P. 201—207.
- Tretyakov D., Belyaev A., Shaposhnikov N. Acoustic anisotropy and localization of plastic deformation in aluminum alloys // Mater. Today Proc. 2020. V. 30. P. 413—416. doi: 10.1016/j.matpr.2019.12.387
- Roohnia M., Tajdini A., Manouchehri N. Assessing wood in sounding boards considering the ratio of acoustical anisotropy // NDT & E International. 2011. V. 44. No. 1. P. 13—20. doi: 10.1016/j.ndteint.2010.09.001
- Busko V.N., Osipov A.A. Application of Magnetic Noise Method to Control the Mechanical Anisotropy of Ferromagnetic Materials // Devices Methods Meas. 2019. V. 10. No. 3. P. 281—292. doi: 10.21122/2220-9506-2019-10-3-281-292
- Murav’eva O.V., Murav’ev V.V. Methodological peculiarities of using SH- and Lamb waves when assessing the anisotropy of properties of flats // Russian Journal of Nondestructive Testing. 2016. V. 52. No. 7. P. 363—369. doi: 10.1134/S1061830916070056
- Murav’ev V.V., Murav’eva O.V., Volkova L.V. Influence of the mechanical anisotropy of thin steel sheets on the parameters of Lamb waves // Steel in Translation. 2016. V. 46. No. 10. P. 752—756. doi: 10.3103/S0967091216100077
- Zou Zhouyiao, Hao Yanpeng, Tian Fangyuan, Zheng Yao, He Weiming, Yang Lin, Li Licheng. An Ultrasonic Longitudinal Through-Transmission Method to Measure the Compressive Internal Stress in Epoxy Composite Specimens of Gas-Insulated Metal-Enclosed Switchgear // Energies. 2020. V. 13. No. 5. P. 1248. doi: 10.3390/en13051248
- Grechnikov F.V., Erisov Ya.A., Zaitsev V.M. On the calculation of mean anisotropy coefficient of sheet materials // News of the Samara Scientific Center of the Russian Academy of Sciences. 2014. V. 16. No. 4. P. 154—157. doi: 10.3103/S0967091216100077
Supplementary files
