Measuring the Viscosity of Sulphur Melt by the Proton Microscopy Method

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Sulfur is a substance with an abnormal dependence of viscosity on temperature. An experimental setup was created to study the viscosity of sulfur at pressures up to 100 bar and temperatures up to 500 °C. To visualize the process of falling of a tungsten carbide ball located in molten sulfur, the proton radiography method was used. The experiment was carried out on a PRIOR-II proton microscope (Institute for Heavy Ion Research, GSI, Darmstadt, Germany). In this experiment, the operating mode of the SIS-18 accelerator with slow beam extraction was used for the first time for proton radiography. The viscosity of the sulfur melt was measured at a pressure of 90 bar and temperatures of 190—320 °C. It has been shown that the viscosity of sulfur is greatly influenced by impurities, including hydrogen sulfide, which appears in the molten sulfur at high temperatures.

Full Text

Restricted Access

About the authors

A. O. Khurchiev

Kurchatov Institute

Author for correspondence.
Email: ayuxa@inbox.ru
Russian Federation, Moscow

R. O. Gavrilin

Kurchatov Institute

Email: ayuxa@inbox.ru
Russian Federation, Moscow

A. V. Skoblyakov

Kurchatov Institute

Email: ayuxa@inbox.ru
Russian Federation, Moscow

A. V. Kantsyrev

Kurchatov Institute

Email: ayuxa@inbox.ru
Russian Federation, Moscow

A. A. Golubev

Kurchatov Institute

Email: ayuxa@inbox.ru
Russian Federation, Moscow

V. B. Mintsev

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the RAS

Email: ayuxa@inbox.ru
Russian Federation, Chernogolovka

D. N. Nikolaev

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the RAS

Email: ayuxa@inbox.ru
Russian Federation, Chernogolovka

N. S. Shilkin

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the RAS

Email: ayuxa@inbox.ru
Russian Federation, Chernogolovka

R. S. Belikov

Goethe University Frankfurt

Email: ayuxa@inbox.ru
Germany, Frankfurt am Main

References

  1. Sofekun G.O. Rheometric Properties of Pure Liquid Elemental Sulfur. Master’s thesis. Calgary, Canada: University of Calgary, 2017.
  2. Steudel R. Liquid sulfur // Top. Curr. Chem. 2003. No. 230. P. 81—116.
  3. Doi T. Physico-chemical properties of sulfur, 1. Pressure effects on viscosity of liquid // Rev. Phys. Chem. Jap. 1963. No. 33. P. 41—52.
  4. Tobolsky A.V., Eisenberg A. Equilibrium Polymerization of Sulfur // J. Am. Chem. Soc. 1959. V. 81. P. 780—782.
  5. Touro F.J., Wiewiorowski T.K. Viscosity-chain length relationship in molten sulfur system // J. Phys. Chem. 1966. V. 70. P. 239—241.
  6. Eisenberg A. The viscosity of liquid sulfur: A mechanistic reinterpretation // Macromolecules. 1968. No. 2. P. 44—48.
  7. Cates M.E. Theory of the viscosity of polymeric liquid sulfur // Europhys. Lett. 1987. No. 4. P. 497—502.
  8. Bacon R., Fanelli R. The viscosity of sulfur // J. Am. Chem. Soc. 1943. V. 65. P. 639—648.
  9. Terasaki H., Kato T., Funakoshi K., Suzuki A., Urakawa S. Viscosity of sulfur under high pressure // J. Phys., Condens. Matt. 2004. V. 16. P. 1707—1714.
  10. Powell E., Eyring H. The properties of liquid sulfur // J. Am. Chem. Soc. 1943. No. 4. V. 65. P. 648–654.
  11. Sukara Reynold E., Secco Richard A. Viscosity of liquid sulfur at 4.5 GPa in the L and L’ regions // High Pressure Research: An International Journal. 2012. No. 32:4. P. 451—456.
  12. Kantsyrev A.V., Golubev A.A., Bogdanov A.V., Demidov V.S., Demidova E.V., Ladygina E.M., Markov N.V., Skachkov V.S., Smirnov G.N., Rudskoy I.V., Kuznetsov A.P., Khudomyasov A.V., Sharkov B.Yu., Dudin S.V., Kolesnikov S.A., Mintsev V.B., Nikolaev D.N., Ternovoi V.Ya., Utkin A.V., Yuriev D.S., Shilkin N.S., Fortov V.E., Turtikov V.I., Burtsev V.V., Zhernokletov M.V., Zavialov N.V., Kartanov S.A., Mikhailov A.L., Rudnev A.V., Tatsenko M.V., Varentsov D.V., Shestov L.M. TWAC-ITEP Proton Microscopy Facility // Instruments and Experimental Techniques. 2014. V. 57. No. 1. P. 1—10.
  13. Varentsov D., Antonov O., Bakhmutova A., Barnes C.W., Bogdanov A., Danly C.R., Efimov S., Endres M., Fertman A., Golubev A.A., Hoffmann D.H.H., Ionita B., Kantsyrev A., Krasik Ya.E., Lang P.M., Lomonosov I., Mariam F.G., Markov N., Merrill F.E., Mintsev V.B., Nikolaev D., Panyushkin V., Rodionova M., Schanz M., Schoenberg K., Semennikov A., Shestov L., Skachkov V.S., Turtikov V., Udrea S., Vasylyev O., Weyrich K., Wilde C., Zubareva A. Commissioning of the PRIOR proton microscope // Review of Scientific Instruments. 2016. V. 87. Is. 2. P. 023303/1—023303/8.
  14. Sofekun G.O., Evoy E., Lesage K.L., Chou N., Marriot R.A. The rheology of liquid elemental sulfur across the λ-transition // Journal of Rheology. 2018. V. 62. P. 469—476.
  15. Stashick M.J., Sofekun G.O., Marriott R.A. Modifying effects of hydrogen sulfide on the rheometric properties of liquid elemental sulfur // AIChE J. 2020. V. 66. Is. 6.
  16. Timrot D.L., Serednitskaya M.A., Medveditskov A.N. Experimental study of the viscosity of the binary system sulfur — iodine in the temperature range of 360—900 K // High Temperature Thermal Physics. 1985. V. 23. No. 5. P. 882—889.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Schematic of the target part of the unit for studying the viscosity of sulphur melt by proton microscopy

Download (207KB)
3. Fig. 2. Installation for measuring sulphur viscosity. On the left is a photograph of the rotary assembly with a titanium tube filled with sulphur with the thermal casing removed. Right - general view of the setup against the background of quadrupole electromagnetic lenses (yellow colour) of the proton-radiographic imaging system of the PRIOR-II proton microscope

Download (833KB)
4. Fig. 3. Proton-radiographic images of the ball in the sulphur melt at different time points. The temperature of the sulphur melt is 286 °C and the pressure is 90 bar

Download (648KB)
5. Fig. 4. Position of the tungsten carbide ball in the sulphur melt at different time points. The temperature of the sulphur melt is 286 °C and the pressure is 90 bar

Download (175KB)
6. Fig. 5. Ball drop rate as a function of sulphur melt temperature at a pressure of 90 bar

Download (158KB)
7. Fig. 6. Viscosity of sulfur melt as a function of temperature. Black squares - experimental data obtained in this work at a pressure of 90 bar; black triangles - experimental data from [3] at a pressure of 100 atm; dashed curve - calculation using the analytical model from [14]

Download (194KB)
8. Fig. 7. Proton-radiographic images of the sulphur melt at different time points. The arrows indicate the bubble boundary

Download (756KB)
9. Fig. 8. Viscosity of sulphur melt as a function of temperature at 90 bar. Black dots are experimental data. Lines correspond to theoretical calculations [14]: solid - hydrogen sulfide mass fraction 140 ppmw; dashed - 120 ppmw; dashed - 160 ppmw; dashed - viscosity of sulfur without impurities

Download (242KB)

Copyright (c) 2024 Russian Academy of Sciences