Development of Methods for Shell and Fuel Layer Characterization of Indirect-Drive Cryogenic Target for Laser Thermonuclear Fusion

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Indirect-drive cryogenic target is a located in box-converter hollow spherical shell-capsule with spherically symmetric solid layer of deuterium-tritium fuel on its inner surface. Placing a cryogenic target in an experiment on ignition at a megajoule energy level facility is preceded by thorough characterization of all component elements of the target and characterization of finished target. This paper describes the characterization method of the entire external surface of the cryogenic target using a confocal scanning, and presents the results of developing an optical shadow method and an X-ray phase-contrast method for characterization the cryogenic fuel layer in the target. The results of stitching the entire external surface are used for interpretation of the results of experiments on the solid fuel layer formation in a cryogenic target. The developed program system for characterization of fuel layers is used for measuring the liquid fuel, for characterization of the solid fuel layer parameters and for evaluation the robustness of the characterization results.

Толық мәтін

Рұқсат жабық

Авторлар туралы

Elena Zarubina

All-Russian Scientific Research Institute of Experimental Physics; Sarov Branch of the Lomonosov Moscow State University

Хат алмасуға жауапты Автор.
Email: zarubinaelena2@yandex.ru
Ресей, 37, Mir St., Sarov, 607188; 8, Parkovaya St., Sarov, 607328

Marina Rogozhina

All-Russian Scientific Research Institute of Experimental Physics

Email: rogozhina.marina.a@gmail.com
Ресей, 37, Mir St., Sarov, 607188

Elena Solomatina

All-Russian Scientific Research Institute of Experimental Physics

Email: eyusolom@gmail.com
Ресей, 37, Mir St., Sarov, 607188

Ivan Chugrov

All-Russian Scientific Research Institute of Experimental Physics

Email: cahbi4var@mail.ru
Ресей, 37, Mir St., Sarov, 607188

Әдебиет тізімі

  1. Ilgisonis V. Fusion research as an essential component of the technological platform of energy security // Energy Policy. 2023. V. 2. No. 180. doi: 10.46920/2409-5516_2023_2180_12
  2. Ilgisonis V.I., Ilyin K.I., Novikov S.G., Olenin Yu.A. On the Program of Russian Research in the Field of Controlled Thermonuclear Fusion and Plasma Technologies // Plasma Physics. 2021. V. 47. No. 11. P. 963—969. doi: 10.31857/S0367292121110172
  3. Danson C.N., Gizzi L.A. Inertial confinement fusion ignition achieved at the National Ignition Facility — an editorial // High Power Laser Science and Engineering. 2023. V. 11. No. 40. doi: 10.1017/hpl.2023.38
  4. Huang H., Stephens R.B., Nikroo A., Eddinger S.A., Chen K.C., Xu H.W., Moreno K.A., Youngblood K.P., Skelton M. Quantitative radiography: Film Model Calibration and Dopant/Impurity Measurement in ICF Ablators // Fusion Science and Technology. 2007. V. 51. No. 4. P. 530—538. doi: 10.13182/FST51-530
  5. Biener J., Ho D.D., Wild C., Woerner E., Woerner E., Biener M.M., El-dasher B.S., Hicks D.G., Eggert J.H., Celliers P.M., Collins G.W., Teslich N.E., Kozioziemski B.J., Haan S.W., Hamza A.V. Diamond spheres for inertial confinement fusion // Nucl. Fusion. 2009. V. 49. P. 112001.
  6. Xianxian Ma, He Ni, Mengshuang Lu, Zihao Liu, Jingwen Huang, Qi Wangb, Yun Wang. A measurement method for three-dimensional inner and outer surface profiles and spatial shell uniformity of laser fusion capsule // Optics and Laser Technology. 2021. V. 134. P. 106601.
  7. Tianliang Yan, Kai Wang, Zhongming Zang, An Lu, Xiaobo Hu, Nan Chen, Huxiang Zhang, Chong Liu, Dong Liu. Compact, snapshot and triple-wavelength system for ICF target ice-layer refractive index and thickness measurement // Optics and Laser Technology. 2021. V. 134. P. 106595.
  8. Nikitenko A.I., Tolokonnikov S.M. Optimal “Tomography” of 2-Layered Targets: 3D Parameters Reconstruction from Shadow Images // Fusion Science and Technology. 2007. V. 51. No. 4. P. 705—716. doi: 10.13182/FST07-A1468
  9. Kucheev S.O., Hamza A.V. Condensed hydrogen for thermonuclear fusion // J. Appl. Phys. 2010. V. 108. P. 091101.
  10. Haan S.W., Lindl J.D., Callahan D.A., Clark D.S., Salmonson J.D., Hammel B.A., Atherton L.J., Cook R.C., Edwards M.J., Glenzer S., Hamza A.V., Hatchett S.P., Herrmann M.C., Hinkel D.E., Ho D.D., Huang H., Jones O.S., Kline J., Kyrala G., Landen O.L., MacGowan B.J., Marinak M.M., Meyerhofer D.D., Milovich J.L., Moreno K.A., Moses E.I., Munro D.H., Nikroo A., Olson R.E., Peterson K., Pollaine S.M., Ralph J.E., Robey H.F., Spears B.K., Springer P.T., Suter L.J., Thomas C.A., Town R.P., Vesey R., Weber S.V., Wilkens H.L., Wilson D.C. Point design targets, specifications, and requirements for the 2010 ignition campaign on the National Ignition Facility // Physics of Plasmas. 2011. V. 18. P. 051001. doi: 10.1063/1.3592169
  11. Narang Simon. Modeling for Direct Drive Fusion Implosions: Cryogenic Target Filling at Arbitrary Viewing Angles and Yield Prediction. Pittsford, New York: Sutherland High School, 2019.
  12. Parham T., Kozioziemski B., Atkinson D., Baisden P., Bertolini L., Boehm K., Chernov A., Coffee K., Coffield F., Dylla-Spears R., Edwards O., Fair J., Fedorov M., Fry J., Gibson C., Haid B., Holunga D., Kohut T., Lewis T., Malsbury T., Mapoles E., Sater J., Skulina K., Trummer D., Walters C. Cryogenic Target System for Hydrogen Layering / American Nuclear Society Scientific Publication. 2016. LLNL-JRNL-696377.
  13. Harding D.R., Wittman M.D., Edgell D.H. Considerations and Requirements for Providing Cryogenic Targets for Direct-Drive Inertial Fusion Implosions at the National Ignition Facility, Fusion Science and Technology // Fusion Science and Technology. 2013. V. 63. No. 2. P. 95—105.
  14. Kozioziemski B.J., Mapoles E.R., Sater J.D., Chernov A.A., Moody J.D., Lugten J.B., Johnson M.A. Deuterium-Tritium Fuel Layer Formation for the National Ignition Facility // Fusion Science and Technology. 2011. V. 59. No. 1. P. 14—25.
  15. Kozioziemski B.J., London R.A., McEachern R.L., and Bittner D.N. Demonstration of symmetry control of infrared heated deuterium layers in holraums. 2003. UCRL-JC-154640.
  16. Cryogenic Target Handling System Operation Manual / Volume IV–CTHS Description, Chapter 8: Characterization Station (CS) — Revision A. 2004.
  17. Numerical Investigation of Characterization of Thick Cryogenic-Fuel Layers Using Convergent Beam Interferometry / LLE Review. V. 79. P. 131—138.
  18. Harding D.R., Wittman M.D., Redden N.P., Edgell D.H., Ulreich J. Comparison of Shadowgraphy and X-Ray Phase Contrast Methods for Characterizing a DT Ice Layer in an Inertial Confinement Fusion Target // Fusion Science and Technology. 2020. doi: 10.1080/15361055.2020.1812990
  19. Garanin S.G., Garnov S.V., Sergeev A.M., Khazanov E.A. Powerful lasers for high energy density physics // Bulletin of the Russian Academy of Sciences. 2021. V. 9. No. 5. P. 435—445.
  20. Averin M.S., Baranova A.S., Busalov A.A., Gnutov A.S., Ermakova I.Yu., Lyapin V.V. Algorithm for transferring a surface mesh in preparing computational meshes for thin-walled structures / Youth in Science: collection of reports from the XXI scientific and technical conference. 2024.
  21. Clark D.S., Haan S.W., Hammel B.A., Salmonson J.D., Callahan D.A., Town R.P. Phys. Plasmas / 2010. 17 (052703).
  22. LMJ & PETAL Status and first experiments // IOP Publishing. Journal of Physics: Conference Series. 2016. V. 717. P. 012084. doi: 10.1088/1742-6596/717/1/012084
  23. Zarubina E.Yu., Rogozhina M.A., and Chugrov I.A. Creation of the Indirect-Drive Cryogenic Target with the Solid Deuterium Layer // Moscow University Physics Bulletin. 2024. V. 79. No. 1. P. 25—38.
  24. Eddinger S.A., Huang H., Schoff M.E. Three-Dimensional Wallmapping Using Xradia with Distortion Correction // Fusion Sci. Technol. 2009. V. 55. No. 4. P. 411—416.
  25. Stephens R. B., Olson D., Huang H., Gibson J. B. Complete Surface Mapping of ICF Shells // Fusion Science and Technology. 2004. V. 45. No. 2. P. 210—213. doi: 10.13182/FST45-210
  26. Antipa N.A., Baxamusa S.H., Buice E.S., Conder A.D., Emerich M.N., Flegel M.S., Heinbockel C.L., Horner J.B., Fair J.E., Kegelmeyer L.M., Koh E.S., Johnson M.A., Maranvill W.L., Meyer J.S., Montesanti R., Nguyen J., Ralph J.E., Reynolds J L. & Senecal J.G. Automated ICF Capsule Characterization Using Confocal Surface Profilometry // Fusion Sci. Technol. 2013. V. 63. No. 2. P. 151—159.
  27. Huang H., Carlson L. C., Requieron W., Rice N., Hoover D., Farrell M., Goodin D., Nikroo A., Biener J., Stadernann M., Haan S.W., Ho D., Wild C. Quantitative Defect Analysis of Ablator Capsule Surfaces Using a Leica Confocal Microscope and a High-Density Atomic Force Microscope // Fusion Sci. Technol. 2016. V. 70. No. 2. P. 377—38.
  28. Chobriat A., Raphaël O., Hermerel C., Busvelle E., Choux A., Merillot P., Reverdy L., Theobald M. Developments in Shell Surface Characterizations Using Holography // Fusion Sci. Technol. 2018. V. 73. No. 2. P. 132—138.
  29. Nguyen Q.L., Eddinger S.A., Huang H., Johnson M.A., Lee Y.T., Montesanti R.C., Moreno K.A., Schoff M.E. Increasing the Throughput of Phase-Shifting Diffraction Interferometer for Quantitative Characterization of ICF Ablator Capsule Surfaces // Fusion Science and Technology. 2009. V. 55. No. 4. P. 399—404. doi: 10.13182/FST09-18
  30. Zarubina E.Yu., Rogozhina M.A., Chugrov I.A. Characterization of hydrogen isotopes cryogenic layer parameters in indirect-drive target / Interaction of hydrogen isotopes with structural materials. IHISM’23 Junior: collection of reports of the 16th International School of Young Scientists and Specialists named after A.A. Kurdyumov. 2023. P. 369—378.
  31. Zarubina E.Yu., Rogozhina M.A., Chugrov I.A. Characterization of Hydrogen Isotopes Layer Parameters in Indirect-Drive Cryogenic Target for Laser Thermonuclear Fusion // FIZMAT. 2024. V. 2. No. 2. P. 134—154.
  32. Zarubina E.Yu., Rogozhina M.A. Shadowgraphic Characterization Method of a Cryogenic Hydrogen Isotope Layer in an Indirect-Drive Target for Inertial Confinement Fusion // Physics of Atomic Nuclei. 2022. V. 5. No. 10. P. 1638—1641. doi: 10.1134/S1063778822100659

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. NIF requirements for cryo-target surfaces [10]. Maximum permissible one-dimensional roughness power spectrum of the cryo-target surfaces (for equatorial surface sheets): 1 - outer surface of the shell; 2 - first to third middle surfaces of the shell; 3 - inner surface of the shell; 4 - inner ice surface. The surfaces are defined relative to the centre of the inner surface of the shell, so mode 1 (non-concentricity) is not defined for this surface.

Жүктеу (165KB)
3. Fig. 2. Design of the RFNC-VNIIEF oversized target: a - box-converter of 1.4 cm diameter with six windows of 2 mm diameter for LI input (LI input is shown for one window); b - part of the cladding with fuel: 1 - HDC cladding (density 3.51 g/cm3); 2 - solid layer of DT-fuel (density 0.25 g/cm3); 3 - saturated DT-gas (density 0.3 mg/cm3).

Жүктеу (278KB)
4. Fig. 3. Schematic diagram of the experimental stand for shell attestation: 1 - main three-axis manipulator; 2 - auxiliary six-axis manipulator; 3 - shell of about 2 mm diameter; 4 - to vacuum system; 5 - optical profilometer lens; 6 - vacuum tweezers; 7 - motorised rotators; 8 - two-axis manual positioners; 9 - slanting table; 10 - three-axis system of motorised positioners; 11 - vibration-absorbing table of optical profilometer; 12 - decoupling optical table; 13 - rotating mirror. Dotted arrows show possible directions of movement of positioners and lens.

Жүктеу (373KB)
5. Fig. 4. Three-dimensional defect map of the outer surface of the hollow PAMS shell in the form of deviations from the surface approximating a sphere with a diameter of 2126 µm.

Жүктеу (257KB)
6. Fig. 5. Estimation of spatial position and geometric parameters of defects. X, Y, Z - coordinates of the defects in the coordinate system with the centre in the centre of the sphere approximating the cross-linked outer surface of the shell; the coordinates are calculated as the projection of the defect centre onto a sphere with a diameter of 2130 µm (the measured diameter of the shell). The numbers on the defects indicate their maximum deviation from the adjacent surface in the radial direction (height, depth). The figure is a map of heights. Parameters of some defects not labelled in the figure are as follows. Defect #1 (the largest): area 7230 µm2, volume 2890 µm3. Defect No. 4 (small): area 79 µm2, volume 8 µm3. Defect No. 6 (the highest): area 1520 µm2, volume 5930 µm3. The area in the figure includes 4 equators with an overlap of 20 to 50%, with 3 topographies in each.

Жүктеу (486KB)
7. Fig. 6. Fourier power spectra computed from the profiles of three neighbouring equators for the shell and the NIF shell outer surface requirements (dashed line).

Жүктеу (142KB)

© Russian Academy of Sciences, 2025