Assessing the diversity of the human ig repertoire after B cell cryopreservation and restimulation
- Autores: Smirnova A.O.1, Ovchinnikova L.A.1, Mamedov I.Z.1, Grigoreva T.V.1, Khazeev S.N.1, Akhmedova M.A.1, Lomakin Y.A.1
-
Afiliações:
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
- Edição: Volume 90, Nº 5 (2025)
- Páginas: 645-655
- Seção: Articles
- URL: https://permmedjournal.ru/0320-9725/article/view/686508
- DOI: https://doi.org/10.31857/S0320972525050055
- EDN: https://elibrary.ru/ISBHLW
- ID: 686508
Citar
Resumo
Cryopreservation of human B cells is widely employed in various clinical and research applications. However, it is still commonly believed that only freshly isolated B cells should be utilized for subsequent analyses to accurately evaluate the natural immunoglobulin (Ig) repertoire in both quantitative and qualitative dimensions. In this study, we use next-generation sequencing to investigate how the Ig repertoire reshapes after the cryopreservation of B cells. Our focus centers on examining the proportional representation of the Ig repertoire after freeze-thawing, both with and without subsequent restimulation. Our research findings encourage scientists to conduct experiments on the Ig repertoire using cryopreserved, patient-derived B cells, underscoring the potential clinical and experimental applications of monitoring the Ig repertoire with cryopreserved B cells.
Palavras-chave
Texto integral

Sobre autores
A. Smirnova
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
Email: yasha.l@bk.ru
Rússia, 117997 Moscow
L. Ovchinnikova
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
Email: yasha.l@bk.ru
Rússia, 117997 Moscow
I. Mamedov
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
Email: yasha.l@bk.ru
Rússia, 117997 Moscow
T. Grigoreva
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
Email: yasha.l@bk.ru
Rússia, 117997 Moscow
S. Khazeev
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
Email: yasha.l@bk.ru
Rússia, 117997 Moscow
M. Akhmedova
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
Email: yasha.l@bk.ru
Rússia, 117997 Moscow
Y. Lomakin
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
Autor responsável pela correspondência
Email: yasha.l@bk.ru
Rússia, 117997 Moscow
Bibliografia
- Tonegawa, S. (1983) Somatic generation of antibody diversity, Nature, 302, 575-581, https://doi.org/10.1038/ 302575a0.
- Zamecnik, C. R., Sowa, G. M., Abdelhak, A., Dandekar, R., Bair, R. D., Wade, K. J., Bartley, C. M., Kizer, K., Augusto, D. G., Tubati, A., Gomez, R., Fouassier, C., Gerungan, C., Caspar, C. M., Alexander, J., Wapniarski, A. E., Loudermilk, R. P., Eggers, E. L., Zorn, K. C., Ananth, K., Jabassini, N., Mann, S. A., Ragan, N. R., Santaniello, A., Henry, R. G., et al. (2024) An autoantibody signature predictive for multiple sclerosis, Nat. Med., 30, 1300-1308, https://doi.org/10.1038/s41591-024-02938-3.
- Sng, J., Ayoglu, B., Chen, J. W., Schickel, J.-N., Ferre, E. M. N., Glauzy, S., Romberg, N., Hoenig, M., Cunningham-Rundles, C., Utz, P. J., Lionakis, M. S., and Meffre, E. (2019) AIRE expression controls the peripheral selection of autoreactive B cells, Sci. Immunol., 4, eaav6778, https://doi.org/10.1126/sciimmunol.aav6778.
- Sanderson, N. S. R., Zimmermann, M., Eilinger, L., Gubser, C., Schaeren-Wiemers, N., Lindberg, R. L. P., Dougan, S. K., Ploegh, H. L., Kappos, L., and Derfuss, T. (2017) Cocapture of cognate and bystander antigens can activate autoreactive B cells, Proc. Natl. Acad. Sci. USA, 114, 734-739, https://doi.org/10.1073/pnas.1614472114.
- Lomakin, Y., Arapidi, G. P., Chernov, A., Ziganshin, R., Tcyganov, E., Lyadova, I., Butenko, I. O., Osetrova, M., Ponomarenko, N., Telegin, G., Govorun, V. M., Gabibov, A., and Belogurov, A. Jr. (2017) Exposure to the Epstein-Barr viral antigen latent membrane protein 1 induces myelin-reactive antibodies in vivo, Front. Immunol., 8, 777, https://doi.org/10.3389/fimmu.2017.00777.
- Lomakin, Y., Kudriaeva, A., Kostin, N., Terekhov, S., Kaminskaya, A., Chernov, A., Zakharova, M., Ivanova, M., Simaniv, T., Telegin, G., Gabibov, A., Belogurov, A. Jr. (2018) Diagnostics of autoimmune neurodegeneration using fluorescent probing, Sci. Rep., 8, 12679, https://doi.org/10.1038/s41598-018-30938-0.
- Ovchinnikova, L. A., Eliseev, I. E., Dzhelad, S. S., Simaniv, T. O., Klimina, K. M., Ivanova, M., Ilina, E. N., Zakharova, M. N., Illarioshkin, S. N., Rubtsov, Y. P., Gabibov, A. G., and Lomakin, Y. A. (2024) High heterogeneity of cross-reactive immunoglobulins in multiple sclerosis presumes combining of B-cell epitopes for diagnostics: a case-control study, Front. Immunol., 15, 1401156, https://doi.org/10.3389/fimmu.2024.1401156.
- DeKosky, B. J., Ippolito, G. C., Deschner, R. P., Lavinder, J. J., Wine, Y., Rawlings, B. M., Varadarajan, N., Giesecke, C., Dörner, T., Andrews, S. F., Wilson, P. C., Hunicke-Smith, S. P., Willson, C. G., Ellington, A. D., and Georgiou, G. (2013) High-throughput sequencing of the paired human immunoglobulin heavy and light chain repertoire, Nat. Biotechnol., 31, 166-169, https://doi.org/10.1038/nbt.2492.
- Turchaninova, M. A., Davydov, A., Britanova, O. V., Shugay, M., Bikos, V., Egorov, E. S., Kirgizova, V. I., Merzlyak, E. M., Staroverov, D. B., Bolotin, D. A., Mamedov, I. Z., Izraelson, M., Logacheva, M. D., Kladova, O., Plevova, K., Pospisilova, S., and Chudakov, D. M. (2016) High-quality full-length immunoglobulin profiling with unique molecular barcoding, Nat. Protoc., 11, 1599-1616, https://doi.org/10.1038/nprot.2016.093.
- Mikelov, A., Alekseeva, E. I., Komech, E. A., Staroverov, D. B., Turchaninova, M. A., Shugay, M., Chudakov, D. M., Bazykin, G. A., and Zvyagin, I. V. (2022) Memory persistence and differentiation into antibody-secreting cells accompanied by positive selection in longitudinal BCR repertoires, eLife, 11, e79254, https://doi.org/10.7554/eLife.79254.
- Phad, G. E., Pinto, D., Foglierini, M., Akhmedov, M., Rossi, R. L., Malvicini, E., Cassotta, A., Fregni, C. S., Bruno, L., Sallusto, F., and Lanzavecchia, A. (2022) Clonal structure, stability and dynamics of human memory B cells and circulating plasmablasts, Nat. Immunol., 23, 1076-1085, https://doi.org/10.1038/s41590-022-01230-1.
- Tian, X., Hong, B., Zhu, X., Kong, D., Wen, Y., Wu, Y., Ma, L., and Ying, T. (2022) Characterization of human IgM and IgG repertoires in individuals with chronic HIV-1 infection, Virol. Sin., 37, 370-379, https://doi.org/ 10.1016/j.virs.2022.02.010.
- Soto, C., Bombardi, R. G., Branchizio, A., Kose, N., Matta, P., Sevy, A. M., Sinkovits, R. S., Gilchuk, P., Finn, J. A., and Crowe, J. E. Jr. (2019) High frequency of shared clonotypes in human B cell receptor repertoires, Nature, 566, 398-402, https://doi.org/10.1038/s41586-019-0934-8.
- Lomakin, Y. A., Zvyagin, I. V., Ovchinnikova, L. A., Kabilov, M. R., Staroverov, D. B., Mikelov, A., Tupikin, A. E., Zakharova, M. Y., Bykova, N. A., Mukhina, V. S., Favorov, A. V., Ivanova, M., Simaniv, T., Rubtsov, Y. P., Chudakov, D. M., Zakharova, M. N., Illarioshkin, S. N., Belogurov, A. A. Jr., and Gabibov, A. G.(2022) Deconvolution of B cell receptor repertoire in multiple sclerosis patients revealed a delay in tBreg maturation, Front. Immunol., 13, 803229, https://doi.org/10.3389/fimmu.2022.803229.
- Lomakin, Y. A., Ovchinnikova, L. A., Terekhov, S. S., Dzhelad, S. S., Yaroshevich, I., Mamedov, I., Smirnova, A., Grigoreva, T., Eliseev, I. E., Filimonova, I. N., Mokrushina, Y. A., Abrikosova, V., Rubtsova, M. P., Kostin, N. N., Simonova, M. A., Bobik, T. V., Aleshenko, N. L., Alekhin, A. I., Boitsov, V. M., Zhang, H., Smirnov, I. V., Rubtsov, Y. P., and Gabibov, A. G. (2024) Two-dimensional high-throughput on-cell screening of immunoglobulins against broad antigen repertoires, Commun. Biol., 7, 842, https://doi.org/10.1038/s42003-024-06500-2.
- Sarkkinen, J., Yohannes, D. A., Kreivi, N., Dürnsteiner, P., Elsakova, A., Huuhtanen, J., Nowlan, K., Kurdo, G., Linden, R., Saarela, M., Tienari, P. J., Kekäläinen, E., Perdomo, M., and Laakso, S. M. (2025) Altered immune landscape of cervical lymph nodes reveals Epstein-Barr virus signature in multiple sclerosis, Sci. Immunol., 10, eadl3604, https://doi.org/10.1126/sciimmunol.adl3604.
- Greiff, V., Menzel, U., Miho, E., Weber, C., Riedel, R., Cook, S., Valai, A., Lopes, T., Radbruch, A., Winkler, T. H., and Reddy, S. T. (2017) Systems analysis reveals high genetic and antigen-driven predetermination of antibody repertoires throughout B cell development, Cell Rep., 19, 1467-1478, https://doi.org/10.1016/j.celrep. 2017.04.054.
- Shrock, E. L., Timms, R. T., Kula, T., Mena, E. L., West, A. P., Guo, R., Lee, I. H., Cohen, A. A., McKay, L. G. A., Bi, C., Leng, Y., Fujimura, E., Horns, F., Li, M., Wesemann, D. R., Griffiths, A., Gewurz, B. E., Bjorkman, P. J., and Elledge, S. J. (2023) Germline-encoded amino acid-binding motifs drive immunodominant public antibody responses, Science, 380, eadc9498, https://doi.org/10.1126/science.adc9498.
- Fischer, K., Lulla, A., So, T. Y., Pereyra-Gerber, P., Raybould, M. I. J., Kohler, T. N., Yam-Puc, J. C., Kaminski, T. S., Hughes, R., Pyeatt, G. L., Leiss-Maier, F., Brear, P., Matheson, N. J., Deane, C. M., Hyvönen, M., Thaventhiran, J. E. D., and Hollfelder, F. (2024) Rapid discovery of monoclonal antibodies by microfluidics-enabled FACS of single pathogen-specific antibody-secreting cells, Nat. Biotechnol., https://doi.org/10.1038/ s41587-024-02346-5.
- Briney, B., Inderbitzin, A., Joyce, C., and Burton, D. R. (2019) Commonality despite exceptional diversity in the baseline human antibody repertoire, Nature, 566, 393-397, https://doi.org/10.1038/s41586-019-0879-y.
- Zhou, X., Wang, H., Ji, Q., Du, M., Liang, Y., Li, H., Li, F., Shang, H., Zhu, X., Wang, W., Jiang, L., Stepanov, A. V., Ma, T., Gong, N., Jia, X., Gabibov, A. G., Lou, Z., Lu, Y., Guo, Y., Zhang, H., and Yang, X. (2021) Molecular deconvolution of the neutralizing antibodies induced by an inactivated SARS-CoV-2 virus vaccine, Protein Cell, 12, 818-823, https://doi.org/10.1007/s13238-021-00840-z.
- Gabibov, A. G., Belogurov, A. A., Lomakin, Y. A., Zakharova, M. Y., Avakyan, M. E., Dubrovskaya, V. V., Smirnov, I. V., Ivanov, A. S., Molnar, A. A., Gurtsevitch, V. E., Diduk, S. V., Smirnova, K.V., Avalle, B., Sharanova, S. N., Tramontano, A., Friboulet, A., Boyko, A. N., Ponomarenko, N. A., and Tikunova, N. V. (2011) Combinatorial antibody library from multiple sclerosis patients reveals antibodies that cross-react with myelin basic protein and EBV antigen, FASEB J., 25, 4211-4221, https://doi.org/10.1096/fj.11-190769.
- Wang, B., DeKosky, B. J., Timm, M. R., Lee, J., Normandin, E., Misasi, J., Kong, R., McDaniel, J. R., Delidakis, G., Leigh, K. E., Niezold, T., Choi, C. W., Viox, E. G., Fahad, A., Cagigi, A., Ploquin, A., Leung, K., Yang, E. S., Kong, W. P., Voss, W. N., Schmidt, A. G., Moody, M. A., Ambrozak, D. R., Henry, A. R., Laboune, F., et al. (2018) Functional interrogation and mining of natively paired human VH:VL antibody repertoires, Nat. Biotechnol., 36, 152-155, https://doi.org/10.1038/nbt.4052.
- Tawfik, D. S., and Griffiths, A. D. (1998) Man-made cell-like compartments for molecular evolution, Nat. Biotechnol., 16, 652-656, https://doi.org/10.1038/nbt0798-652.
- Georgiou, G., Ippolito, G. C., Beausang, J., Busse, C. E., Wardemann, H., and Quake, S. R. (2014) The promise and challenge of high-throughput sequencing of the antibody repertoire, Nat. Biotechnol., 32, 158-168, https://doi.org/10.1038/nbt.2782.
- Terekhov, S. S., Smirnov, I. V., Stepanova, A. V., Bobik, T. V., Mokrushina, Y. A., Ponomarenko, N. A., Belogurov, A. A. Jr., Rubtsova, M. P., Kartseva, O. V., Gomzikova, M. O., Moskovtsev, A. A., Bukatin, A. S., Dubina, M. V., Kostryukova, E. S., Babenko, V. V., Vakhitova, M. T., Manolov, A. I., Malakhova, M. V., Kornienko, M. A., Tyakht, A. V., Vanyushkina, A. A., Ilina, E. N., Masson, P., Gabibov, A. G., and Altman, S. (2017) Microfluidic droplet platform for ultrahigh-throughput single-cell screening of biodiversity, Proc. Natl. Acad. Sci. USA, 114, 2550-2555, https://doi.org/10.1073/pnas.1621226114.
- Zheng, G. X. Y., Terry, J. M., Belgrader, P., Ryvkin, P., Bent, Z. W., Wilson, R., Ziraldo, S. B., Wheeler, T. D., McDermott, G. P., Zhu, J., Gregory, M. T., Shuga, J., Montesclaros, L., Underwood, J. G., Masquelier, D. A., Nishimura, S. Y., Schnall-Levin, M., Wyatt, P. W., Hindson, C. M., Bharadwaj, R., Wong, A., Ness, K. D., Beppu, L. W., Deeg, H. J., McFarland, C., et al. (2017) Massively parallel digital transcriptional profiling of single cells, Nat. Commun., 8, 14049, https://doi.org/10.1038/ncomms14049.
- Costantini, A., Mancini, S., Giuliodoro, S., Butini, L., Regnery, C. M., Silvestri, G., and Montroni, M. (2003) Effects of cryopreservation on lymphocyte immunophenotype and function, J. Immunol. Methods, 278, 145-155, https://doi.org/10.1016/S0022-1759(03)00202-3.
- Schäfer, A. K., Waterhouse, M., Follo, M., Duque-Afonso, J., Duyster, J., Bertz, H., and Finke, J. (2020) Phenotypical and functional analysis of donor lymphocyte infusion products after long-term cryopreservation, Transfus. Apher. Sci., 59, 102594, https://doi.org/10.1016/j.transci.2019.06.022.
- Zhang, J., Yin, Z., Liang, Z., Bai, Y., Zhang, T., Yang, J., Li, X., and Xue, L. (2024) Impacts of cryopreservation on phenotype and functionality of mononuclear cells in peripheral blood and ascites, J. Transl. Intern. Med., 12, 51-63, https://doi.org/10.2478/jtim-2023-0136.
- Anderson, J., Toh, Z. Q., Reitsma, A., Do, L. A. H., Nathanielsz, J., and Licciardi, P. V. (2019) Effect of peripheral blood mononuclear cell cryopreservation on innate and adaptive immune responses, J. Immunol. Methods, 465, 61-66, https://doi.org/10.1016/j.jim.2018.11.006.
- Fecher, P., Caspell, R., Naeem, V., Karulin, A. Y., Kuerten, S., and Lehmann, P. V. (2018) B cells and B cell blasts withstand cryopreservation while retaining their functionality for producing antibody, Cells, 7, 50, https://doi.org/10.3390/cells7060050.
- Ticha, O., Moos, L., and Bekeredjian-Ding, I. (2021) Effects of long-term cryopreservation of PBMC on recovery of B cell subpopulations, J. Immunol. Methods, 495, 113081, https://doi.org/10.1016/j.jim.2021.113081.
- Jahnmatz, M., Kesa, G., Netterlid, E., Buisman, A.-M., Thorstensson, R., and Ahlborg, N. (2013) Optimization of a human IgG B-cell ELISpot assay for the analysis of vaccine-induced B-cell responses, J. Immunol. Methods, 391, 50-59, https://doi.org/10.1016/j.jim.2013.02.009.
- Bolotin, D. A., Poslavsky, S., Mitrophanov, I., Shugay, M., Mamedov, I. Z., Putintseva, E. V., and Chudakov, D. M. (2015) MiXCR: software for comprehensive adaptive immunity profiling, Nat. Methods, 12, 380-381, https://doi.org/10.1038/nmeth.3364.
- Shugay, M., Bagaev, D. V., Turchaninova, M. A., Bolotin, D. A., Britanova, O. V., Putintseva, E. V., Pogorelyy, M. V., Nazarov, V. I., Zvyagin, I. V., Kirgizova, V. I., Kirgizov, K. I., Skorobogatova, E. V., and Chudakov, D. M. (2015) VDJtools: unifying post-analysis of T cell receptor repertoires, PLoS Comput. Biol., 11, e1004503, https://doi.org/10.1371/journal.pcbi.1004503.
- Lefranc, M.-P., Pommié, C., Ruiz, M., Giudicelli, V., Foulquier, E., Truong, L., Thouvenin-Contet, V., and Lefranc, G. (2003) IMGT unique numbering for immunoglobulin and T cell receptor variable domains and Ig superfamily V-like domains, Dev. Comp. Immunol., 27, 55-77, https://doi.org/10.1016/S0145-305X(02)00039-3.
- Tipton, C. M., Fucile, C. F., Darce, J., Chida, A., Ichikawa, T., Gregoretti, I., Schieferl, S., Hom, J., Jenks, S., Feldman, R. J., Mehr, R., Wei, C., Lee, F. E., Cheung, W. C., Rosenberg, A. F., and Sanz, I. (2015) Diversity, cellular origin and autoreactivity of antibody-secreting cell population expansions in acute systemic lupus erythematosus, Nat. Immunol., 16, 755-765, https://doi.org/10.1038/ni.3175.
- Arpin, C., Banchereau, J., and Liu, Y.-J. (1997) Memory B cells are biased towards terminal differentiation: a strategy that may prevent repertoire freezing, J. Exp. Med., 186, 931-940, https://doi.org/10.1084/jem.186.6.931.
- Kyu, S. Y., Kobie, J., Yang, H., Zand, M. S., Topham, D. J., Quataert, S. A., Sanz, I., and Lee, F. E. (2009) Frequencies of human influenza-specific antibody secreting cells or plasmablasts post vaccination from fresh and frozen peripheral blood mononuclear cells, J. Immunol. Methods, 340, 42-47, https://doi.org/10.1016/j.jim.2008.09.025.
Arquivos suplementares
