Circadian dynamics of grass stand invertebrate communities exposed to emissions from the Middle Ural Copper Smelter

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The study investigated the circadian dynamics of the invertebrate communities in the meadow grass stands along the pollution gradient of the Middle Ural Copper Smelter (the main pollutants are SO2 and heavy metals). In the most polluted area, the abundance of invertebrates in the upper part of the grass stand increases in the second half of the day, both in total (1.9 times) and in the groups of herbivores, both sucking (3.2 times) and chewing (2.2 times). This leads to a significant decrease in the similarity of the shape of the curves of circadian dynamics in the background and most polluted areas. In the other trophic groups considered, circadian changes are less pronounced. The obtained results confirm the hypothesis about modification of circadian dynamics of grass stand invertebrates under industrial pollution. The most probable reasons for the changes are general degradation of invertebrate habitat, destabilization of temperature regime in it, as well as changes in the composition and structure of invertebrate communities themselves.

全文:

受限制的访问

作者简介

A. Nesterkov

Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: nesterkov@ipae.uran.ru
俄罗斯联邦, 620144 Yekaterinburg

参考

  1. Чернов Ю.И., Руденская Л.В. Комплекс беспозвоночных – обитателей травостоя как ярус животного населения // Зоол. журн. 1975. Т. 54. № 6. C. 884–894.
  2. Чернышев В.Б. Суточные ритмы активности насекомых. М.: Изд-во МГУ, 1984. 216 c.
  3. Ehret C.F., Trucco E. Molecular models for the circadian clock: I. The chronon concept // J. of Theoretical Biology. 1967. V. 15. № 2. P. 240–262.
  4. Sweeney B.M. A physiological model for circadian rhythms derived from the Acetabularia rhythm paradoxes // Internat. J. of Chronobiology. 1974. V. 2. № 1. P. 25–33.
  5. Njus D., Sulzman F.M., Hastings J.W. Membrane model for the circadian clock // Nature. 1974. V. 248. № 5444. P. 116–120.
  6. Driessche T.V. Circadian rhythms and molecular biology // Biosystems. 1975. V. 6. № 3. P. 188–201.
  7. Pavlidis T. Populations of interacting oscillators and circadian rhythms // J. of Theoretical Biology. 1969. V. 22. № 3. P. 418–436.
  8. Danilevsky A.S., Goryshin N.I., Tyschchenko V.P. Biological rhythms in terrestrial arthropods // Annual Review of Entomology. 1970. V. 15. P. 201–244.
  9. Aschoff J. Exogenous and endogenous components in circadian rhythms // Cold Spring Harbor Symposia on Quantitative Biology. 1960. V. 25. P. 11–28.
  10. Brown F.A. The biological clock phenomenon: Exogenous timing hypothesis // J. of Interdisciplinary Cycle Research. 1983. V. 14. № 2. P. 137–162.
  11. Куликов Н.И. Суточная динамика членистоногих в агроценозах зерновых культур // Экология. 1994. № 6. C. 35–43.
  12. Молодова Л.П. Динамика жесткокрылых-хортобионтов на некоторых сельскохозяйственных культурах // Экология. 1984. № 1. C. 81–82.
  13. Литвинова Н.Ф., Гусева В.С., Крыгин А.Ю. Суточная динамика беспозвоночных в травостое крупнотравной саванны // Зоол. журн. 1982. Т. 61. № 6. C. 945–947.
  14. Calkins C.O., Manglitz G.R. Seasonal changes in daily activity periods of the sweetclover weevil // J. of Economic Entomology. 1968. V. 61. № 2. P. 391–394.
  15. Doria H.B., Ferreira M.B., Rodrigues S.D. et al. Time does matter! Acute copper exposure abolishes rhythmicity of clock gene in Danio rerio // Ecotoxicology and Environmental Safety. 2018. V. 155. P. 26–36.
  16. Sabbar M., Dkhissi-Benyahya O., Benazzouz A. et al. Circadian clock protein content and daily rhythm of locomotor activity are altered after chronic exposure to lead in rat // Frontiers in Behavioral Neuroscience. 2017. V. 11. P. 1–14.
  17. Xiao B., Chen T.-M., Zhong Y. Possible molecular mechanism underlying cadmium-induced circadian rhythms disruption in zebrafish // Biochemical and Biophysical Research Communications. 2016. V. 481. № 3. P. 201–205.
  18. Jiménez-Ortega V., Cardinali D.P., Fernández-Mateos M.P. et al. Effect of cadmium on 24-hour pattern in expression of redox enzyme and clock genes in rat medial basal hypothalamus // BioMetals. 2010. V. 23. P. 327–337.
  19. Algarve T.D., Assmann C.E., Aigaki T. et al. Parental and preimaginal exposure to methylmercury disrupts locomotor activity and circadian rhythm of adult Drosophila melanogaster // Drug and Chemical Toxicology. 2020. V. 43. № 3. P. 255–265.
  20. Нестерков А.В. Признаки восстановления сообществ беспозвоночных травостоя после снижения выбросов медеплавильного завода // Экология. 2022. № 6. C. 468–478. [Nesterkov A.V. Recovery signs in grass-stand invertebrate communities after a decrease in copper-smelting emissions // Russ. J. Ecol. 2022. V. 53. № 6. P. 553–564.]
  21. Нестерков А.В., Воробейчик Е.Л. Изменение структуры населения беспозвоночных-хортобионтов под действием выбросов медеплавильного завода // Экология. 2009. № 4. C. 303–313. [Nesterkov A.V., Vorobeichik E.L. Changes in the structure of chortobiont invertebrate community exposed to emissions from a copper smelter // Russ. J. Ecol. 2009. V. 40. № 4. P. 286–296.]
  22. Hunter B.A., Johnson M.S., Thompson D.J. Ecotoxicology of copper and cadmium in a contaminated grassland ecosystem. I. Soil and vegetation contamination // J. of Applied Ecology. 1987. V. 24. № 2. P. 573–586.
  23. Золотарев М.П., Нестерков А.В. Паукообразные (Aranei, Opiliones) лугов: реакция на загрязнение выбросами Среднеуральского медеплавильного комбината // Экология. 2015. № 1. C. 48–56. [Zolotarev M.P., Nesterkov A.V. Arachnids (Aranei, Opiliones) in meadows: Response to pollution with emissions from the Middle Ural Copper Smelter // Russ. J. Ecol. 2015. V. 46. № 1. P. 81–88.]
  24. Нестерков А.В., Гребенников М.Е. Сообщества моллюсков лугового травостоя в условиях снижения выбросов медеплавильного производства // Экология. 2020. № 6. C. 471–480. [Nesterkov A.V., Grebennikov M.E. Grassland land snail communities after reduction of emissions from a copper smelter // Russ. J. Ecol. 2020. V. 51. № 6. P. 578–588.]
  25. Нестерков А.В. Реакция моллюсков луговых сообществ на выбросы Среднеуральского медеплавильного завода // Сибирский экологич. журн. 2013. № 6. C. 891–899.
  26. Воробейчик Е.Л., Садыков О.Ф., Фарафонтов М.Г. Экологическое нормирование техногенных загрязнений наземных экосистем. Екатеринбург: Наука, 1994. 280 c.
  27. Нестерков А.В., Нестеркова Д.В. Реакция населения беспозвоночных остепненных и пойменных лугов на выбросы Карабашского медеплавильного завода // Экология. 2023. № 6. C. 470–480. [Nesterkov A.V., Nesterkova D.V. The response of the invertebrate communities of steppe and floodplain meadows to emissions from the Karabash Copper Smelter // Russ. J. Ecol. 2023. V. 54. № 6. P. 542–552.]
  28. Perner J., Voigt W., Bährmann R. et al. Responses of arthropods to plant diversity: Changes after pollution cessation // Ecography. 2003. V. 26. № 6. P. 788–800.
  29. Нестерков А.В., Воробейчик Е.Л. Влияние промышленного загрязнения на суточную динамику обилия беспозвоночных-хортобионтов // Естественные науки. 2010. № 3. C. 107–112.
  30. Воробейчик Е.Л., Кайгородова С.Ю. Многолетняя динамика содержания тяжелых металлов в верхних горизонтах почв в районе воздействия медеплавильного завода в период снижения его выбросов // Почвоведение. 2017. № 8. C. 1009–1024.
  31. Воробейчик Е.Л., Трубина М.Р., Хантемирова Е.В. и др. Многолетняя динамика лесной растительности в период сокращения выбросов медеплавильного завода // Экология. 2014. № 6. C. 448–458. [Vorobeichik E.L., Trubina M.R., Khantemirova E.V. et al. Long-term dynamic of forest vegetation after reduction of copper smelter emissions // Russ. J. Ecol. 2014. V. 45. № 6. P. 498–507.]
  32. R Core Team. R: A language and environment for statistical computing. http://www.R-project.org/.
  33. Wickham H. ggplot2: Elegant graphics for data analysis. New York: Springer-Verlag, 2016. 260 p.
  34. Tremblay A., Ransijn J. LMERConvenienceFunctions: Model selection and post-hoc analysis for (G)LMER models. R package version 3.0. https://CRAN.R-project.org/package=LMERConvenienceFunctions.
  35. Hothorn T., Bretz F., Westfall P. Simultaneous inference in general parametric models // Biometrical J. 2008. V. 50. № 3. P. 346–363.
  36. Sarda-Espinosa A. dtwclust: Time series clustering along with optimizations for the dynamic time warping distance. R package version 5.5.12. https://CRAN.R-project.org/package=dtwclust.
  37. Meyer D., Buchta C. proxy: Distance and similarity measures. R package version 0.4–27. https://CRAN.R-project.org/package=proxy.
  38. Paparrizos J., Gravano L. k-Shape: Efficient and accurate clustering of time series // Proceedings of the 2015 ACM SIGMOD International conference on management of data: Association for Computing Machinery. 2015. P. 1855–1870.
  39. Canty A., Ripley B. boot: Bootstrap R (S-plus) functions. R package version 1.3-28.1. https://cran.r-project.org/web/packages/boot/index.html.
  40. Begueria S., Vicente-Serrano S.M. SPEI: Calculation of the standardised precipitation-evapotranspiration index. R package version 1.7. https://CRAN.R-project.org/package=SPEI.
  41. Расписание погоды. Информация о погодных условиях метеостанции г. Ревда (синоптический индекс станции – 28430). https://www.rp5.ru.
  42. Zvereva E.L., Kozlov M.V. Responses of terrestrial arthropods to air pollution: A meta-analysis // Environmental Science and Pollution Research. 2010. V. 17. № 2. P. 297–311.
  43. Николаева Н.В., Нестерков А.В. Состав и обилие тлей (Homoptera, Aphidoidea) в травостое на территориях с разным уровнем воздействия выбросов медеплавильного завода // Окружающая среда и устойчивое развитие регионов: новые методы и технологии исследований / Под ред. Скворцова Э.В., Роговой Т.В. Казань: Бриг, 2009. C. 242–246.
  44. Woodcock B.A., Pywell R.F. Effects of vegetation structure and floristic diversity on detritivore, herbivore and predatory invertebrates within calcareous grasslands // Biodiversity and Conservation. 2010. V. 19. № 1. P. 81–95.
  45. Haddad N.M., Crutsinger G.M., Gross K. et al. Plant species loss decreases arthropod diversity and shifts trophic structure // Ecology Letters. 2009. V. 12. № 10. P. 1029–1039.
  46. Zvereva E.L., Kozlov M.V. Changes in the abundance of vascular plants under the impact of industrial air pollution: A meta-analysis // Water, Air and Soil Pollution. 2012. V. 223. P. 2589‒2599.
  47. Хантемирова Е.В. Состав и структура луговых ценозов в градиенте загрязнения выбросами медеплавильного завода на Среднем Урале // Флора и растительность антропогенно нарушенных территорий: Сборник научн. тр. Кемеровского отд. Русского ботанич. об-ва: «Ирбис», 2010. C. 61–63.
  48. Schaffers A.P., Raemakers I.P., Sýkora K.V. et al. Arthropod assemblages are best predicted by plant species composition // Ecology. 2008. V. 89. № 3. P. 782–794.
  49. Reid A.M., Hochuli D.F. Grassland invertebrate assemblages in managed landscapes: Effect of host plant and microhabitat architecture // Austral Ecology. 2007. V. 32. № 6. P. 708–718.
  50. Denno R.F. Influence of habitat structure on the abundance and diversity of planthoppers // Planthoppers: Their ecology and management / Eds. Denno R.F., Perfect T.J. Boston, MA: Springer US, 1994. P. 140–159.
  51. Wenninger E.J., Inouye R.S. Insect community response to plant diversity and productivity in a sagebrush-steppe ecosystem // J. of Arid Environments. 2008. V. 72. № 1. P. 24–33.
  52. Belskii E., Belskaya E. Thermal effect of the Middle Ural copper smelter (Russia) and growth of birch leaves // Environmental Science and Pollution Research. 2021. V. 28. № 20. P. 26064–26072.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Daily dynamics of total abundance (a) and distribution of SBD index values ​​when comparing pairs of pollution zones (b) in grass invertebrate communities: a – means and boundaries of the 95% confidence interval, accounting unit – 3 sample plots × 3 rounds of counts (n = 9); b – median, quartiles and outliers; accounting unit – 9 comparisons between sample plots in a counting round × 4 comparisons between counting days (counters) in a round × 3 rounds of counts (n = 108).

下载 (226KB)
3. Fig. 2. Daily dynamics of the main trophic groups in the communities of grass invertebrates: a – sucking phytophages, b – gnawing phytophages, c – sucking zoophages, d – gnawing zoophages. The averages and the boundaries of the 95% confidence interval are given, the accounting unit is 3 sample plots × 3 rounds of counts (n = 9).

下载 (401KB)
4. Fig. 3. Daily dynamics of air temperature in different pollution zones: a – above the grass stand, b – in the grass stand, c – near the soil level. The averages and the boundaries of the 95% confidence interval are given, the accounting unit is a sample plot (n = 3).

下载 (347KB)

版权所有 © Russian Academy of Sciences, 2025