Oxidative Damage and Antioxidant Response of Acinetobacter calcoaceticus, Pseudomonas putida and Rhodococcus erythropolis Bacteria during Antibiotic Treatment
- Авторлар: Sazykin I.S.1, Plotnikov A.A.1, Lanovaya O.D.1, Onasenko K.A.1, Polinichenko A.E.1, Mezga A.S.1, Azhogina T.N.1, Litsevich A.R.1, Sazykina M.A.1
-
Мекемелер:
- Southern Federal University
- Шығарылым: Том 60, № 1 (2024)
- Беттер: 39-47
- Бөлім: Articles
- URL: https://permmedjournal.ru/0555-1099/article/view/674573
- DOI: https://doi.org/10.31857/S0555109924010049
- EDN: https://elibrary.ru/HCUPXZ
- ID: 674573
Дәйексөз келтіру
Аннотация
In this work, oxidative damage and the level of antioxidant response in Acinetobacter calcoaceticus, Pseudomonas putida, and Rhodococcus erythropolis cells under the influence of such antibiotics as ampicillin, azithromycin, rifampicin, tetracycline, and ceftriaxone were studied. The level of protein carboxylation and lipid peroxidation (LPO), as well as the activity of superoxide dismutase (SOD), catalase, glutathione reductase (GR), and the level of glutathione 3 and 6 hours after antibiotic treatment of bacteria were assessed. It is observed that SOD induction occurs earlier and is more active than catalase induction. In A. calcoaceticus, SOD is induced together with protein carboxylation and probably protects them from oxidative damage, while catalase induction correlates with LPO. A positive correlation is also noted between catalase activity and glutathione content in R. erythropolis. Catalase activity increases insignificantly and even decreases under the studied antibiotics influence, which is associated with an insignificant level of lipid peroxidation in most prokaryotes. On the other hand, low catalase activity can contribute to genome destabilization as a result of oxidative stress and enhance the adaptive evolution of bacteria.
Толық мәтін

Авторлар туралы
I. Sazykin
Southern Federal University
Email: samara@sfedu.ru
Ресей, Rostov-on-Don, 344090
A. Plotnikov
Southern Federal University
Email: samara@sfedu.ru
Ресей, Rostov-on-Don, 344090
O. Lanovaya
Southern Federal University
Email: samara@sfedu.ru
Ресей, Rostov-on-Don, 344090
K. Onasenko
Southern Federal University
Email: samara@sfedu.ru
Ресей, Rostov-on-Don, 344090
A. Polinichenko
Southern Federal University
Email: samara@sfedu.ru
Ресей, Rostov-on-Don, 344090
A. Mezga
Southern Federal University
Email: samara@sfedu.ru
Ресей, Rostov-on-Don, 344090
T. Azhogina
Southern Federal University
Email: samara@sfedu.ru
Ресей, Rostov-on-Don, 344090
A. Litsevich
Southern Federal University
Email: samara@sfedu.ru
Ресей, Rostov-on-Don, 344090
M. Sazykina
Southern Federal University
Хат алмасуға жауапты Автор.
Email: samara@sfedu.ru
Ресей, Rostov-on-Don, 344090
Әдебиет тізімі
- Yoneyama H., Katsumata R. // Biosci. Biotechnol. Biochem. 2006. V. 70. № 5. P. 1060–1075.
- Фурман Ю.В., Артюшкова Е. Б., Аниканов А. В. // Актуальные проблемы социально-гуманитарного и научно-технического знания. 2019. № 1. С. 1–3.
- Пескин А.В. // Биохимия. 1997. Т. 62. № 12. С. 1571–1578.
- Imlay J.A. // Cur. Opin. Microbiol. 2015. V. 24. P. 124–131.
- Sazykin I.S., Sazykina M. A. // Gene. 2023. V. 857. P. 147170. https://doi.org/10.1016/j.gene.2023.147170
- Goyal A. // iScience. 2022. V. 25. № 5. P. 104312.
- Levine R.L., Garland D., Oliver C. N., Amici A., Climent I., Lenz A. G. et al. // Methods Enzymol. 1990. V. 186. P. 464–478.
- Дубинина Е.Е., Бурмистров С. О., Ходов Д. А., Поротов Г. Е. // Вопросы медицинской химии. 1995. Т. 41. № 1. С. 24–26.
- Стальная И.Д., Гаришвили Т. Г. // Современные методы в биохимии. 1977. Т. 2. № 3. С. 66–68.
- Королюк М. А., Иванова Л. К., Майорова И. Г., Токарева В. А. //Лабораторное дело. 1988. № 4. С. 44–47.
- Сирота Т.В. // Вопросы медицинской химии. 1999. Т. 45. № 3. С. 263–272.
- Ellman G.L. // Arch. Biochem. Biophys. 1959. V. 82. № 1. P. 70–77.
- Юсупова Л.Б. // Лабораторное дело. 1989. Т. 4. № 19–21. С. 13.
- Wanarska E., Mielko K. A., Maliszewska I., Młynarz P. // Sci. Rep. 2022. V. 12. № 1. P. 1913.
- Shin B., Park C., Park W. //Appl. Microbiol. Biotechnol. 2020. Т. 104. С. 1423–1435.
- Belenky P., Ye J. D., Porter C. B., Cohen N. R., Lobritz M. A., Ferrante T. et al. // Cell Rep. 2015. V. 13. № 5. P. 968–980.
- Brogden R.N., Ward A. // Drugs. 1988. V. 35. № 6. P. 604–645.
- Постникова Л.Б., Соодаева С. К., Климанов И. А., Кубышева Н. И., Афиногенов К. И., Глухова М. В., Никитина Л. Ю. // Пульмонология. 2017. V. 27. № 5. P. 664–671.
- Куликова Н. А. // Международный студенческий научный вестник. 2017. № 4–5. С. 614–615.
- Weimer A., Kohlstedt M., Volke D. C., Nikel P. I., Wittmann C. // Appl. Microbiol. Biotechnol. 2020. V. 104. P. 7745–7766.S
- Nikel P. I., Fuhrer T., Chavarría M., Sánchez-Pascuala A., Sauer U., de Lorenzo V. // ISME J. 2021. V. 15. № 6. P. 1751–1766.
- Van Acker H., Gielis J., Acke M., Cools F., Cos P., Coenye T. // PloS One. 2016. V. 11. № 7. e0159837. https://doi.org/10.1371/journal.pone.0159837
- Pátek M., Grulich M., Nešvera J. // Biotechnol. Adv. 2021. V. 53. P. 107698.
- Urbano S. B., Di Capua C., Cortez N., Farías M. E., Alvarez H. M. // Extremophiles. 2014. V. 18. P. 375–384.
- Meireles A., Faia S., Giaouris E., Simões M. // Biofouling. 2018. V. 34. № 10. P. 1150–1160.
- Ren X., Zou L., Holmgren A. // Curr. Med. Chem. 2020. V. 27. № 12. P. 1922–1939. https://doi.org/10.2174/0929867326666191007163654
- Cleeland R., Squires E. // Am. J. Med. 1984. V. 77. (4C). P. 3–11.
- Mourenza Á., Gil J. A., Mateos L. M., Letek M. // Antioxidants. 2020. V. 9. № 5. P. 361.
- Aguilera J., Rautenberger R. // Oxidative Stress in Aquatic Ecosystems. 2011. P. 58–71. https://doi.org/10.1002/9781444345988.ch4
- Martins D., McKay G., Sampathkumar G., Khakimova M., English A. M., Nguyen D. // PNAS. 2018. V. 115. № 39. P. 9797–9802.
- Heindorf M., Kadari M., Heider C., Skiebe E., Wilharm G. // PloS One. 2014. V. 9. № 7. P. e101033.
- Retsema J., Girard A., Schelkly W., Manousos M., Anderson M., Bright G. et al. // Antimicrob. Agents Сhemother. 1987. V. 31. № 12. P. 1939–1947.
- Mirzaei R., Mesdaghinia A., Hoseini S. S., Yunesian M. // Chemosphere. 2019. V. 221. P. 55–66.
- Ramanathan S., Arunachalam K., Chandran S., Selvaraj R., Shunmugiah K. P., Arumugam V. R. // J. Аppl. Microbiol. 2018. V. 125. № 1. P. 56–71. https://doi.org/10.1111/jam.13741.
- Zhang Y.N., Duan K. M. // Sci. China C Life Sci. 2009. V. 52. № 6. P. 501–505.
- Daschner F.D., Frank U. // Infection. 1989. V. 17. № 4. P. 272–274.
- Gnann Jr J. W., Goetter W. E., Elliott A. M., Cobbs C. G. // Antimicrob. Agents Chemother // 1982. V. 22. № 1. P. 1–9.
- El-Barbary M.I., Hal A. M. // J. Aquac. Res. Development. 2017. V. 8. № 7. P. 1–7. https://doi.org/10.4172/2155-9546.1000499
- Konikkat S., Scribner M. R., Eutsey R., Hiller N. L., Cooper V. S., McManus J. // PLoS genetics. 2021. V. 17. № 7: e1009634. https://doi.org/10.1371/journal.pgen.1009634
- Elbehiry A., Marzouk E., Aldubaib M., Moussa I., Abalkhail A., Ibrahem M. et al. // AMB Express. 2022. V. 12. № 1. P. 53. https://doi.org/10.1186/s13568-022-01390-1
- Plaggenborg R., Overhage J., Loos A., Archer J. A. C., Lessard P., Sinskey A. J. et al. // Appl. Microbiol. Biotechnol. 2006. V. 72. № 4. P. 745–755.
- Stancu M. M. // J. Environ. Sci. (Shina) 2014. V. 26. № 10. P. 2065–2075. https://doi.org/10.1016/j.jes.2014.08.006
- Yamshchikov A.V., Schuetz A., Lyon G. M. // Lancet Infecti. Dis. 2010. V. 10. № 5. P. 350–359.
- McNeil M.M., Brown J. M. // Eur. J. Epidemiol. 1992. V. 8. № 3. P. 437–443.
- Asoh N., Watanabe H., Fines-Guyon M., Watanabe K., Oishi K., Kositsakulchai W. et al. // J. Clin. Microbiol. 2003. V. 41. № 6. P. 2337–2340.
- Vaubourgeix J., Lin G., Dhar N., Chenouard N., Jiang X., Botella H. et al. // Cell Host & Microbe. 2015. V. 17. № 2. P. 178–190.
- Nyström T. // EMBO J. 2005. V. 24. № 7. P. 1311–1317.
Қосымша файлдар
