Inducible whole-cell biosensor for detection of formate ions

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Ten strains of the yeast Yarrowia lipolytica were constructed, the genomes of which contain hrGFP gene under the regulation of the formate dehydrogenase promoters. The resulting strains can act as whole-cell biosensors for the detection of formate ions in various mediums. By visual assessment of biomass fluorescence, we selected the three most promising yeast strains. The main biosensor characteristics (threshold sensitivity, amplitude and response time) of the selected strains were measured. As a result, in terms of characteristics, the B26 strain was recognized as the most suitable for the detection of formate ions. A carbon source for the nutrient medium that does not reduce the activation of the biosensor was selected. Furthermore, we showed that unlike formate and formaldehyde, methanol practically does not induce the biosensor fluorescence response.

全文:

受限制的访问

作者简介

А. Cherenkova

National Research Center “Kurchatov Institute”; Mendeleev University of Chemical Technology

Email: oligamelkina@gmail.com

Complex of NBICS Technologies

俄罗斯联邦, Moscow, 123098; Moscow, 125480

Т. Yuzbashev

Rothamsted Research

Email: oligamelkina@gmail.com

Plant Sciences and the Bioeconomy

英国, West Common, Harpenden, AL5 2JQ, Hertfordshire

О. Melkina

National Research Center “Kurchatov Institute”

编辑信件的主要联系方式.
Email: oligamelkina@gmail.com

Complex of NBICS Technologies

俄罗斯联邦, Moscow, 123098

参考

  1. Robles H. Encyclopedia of Toxicology. 2nd Ed. / Ed. P. Wexler: Elsevier, 2005. P. 378‒380.
  2. Cunha S., Rangaiah G.P., Hidajat K. Computer Aided Chemical Engineering. / Eds. A. Espuña, M. Graells, L. Puigjaner: Elsevier, 2017. V. 40. P. 1093‒1098.
  3. Larsson S., Palmqvist E., Hahn-Hägerdal B., Tengborg C., Stenberg K., Zacchi G., Nilvebrant N.O. // Enzyme Microb. Technol. 1999. V. 24. P. 151‒159.
  4. Zaldivar J., Martinez A., Ingram L.O. // Biotechnol. Bioeng.. 2000. V. 68. № 5. P. 524‒530.
  5. Кочетков А.В. // Строительные материалы. 2011. № 7. С. 44‒46.
  6. Triebig G., Schaller K.H. // Clin Chim Acta. 1980. V. 108. № 3. P. 355‒360.
  7. Ohmori S., Sumii I., Toyonaga Y., Nakata K., Kawase M. //J. Chromatogr. 1988. V. 426. № 1. P. 15‒24.
  8. Kim, J.K., Shiraishi T., Fukusaki E.I., Kobayashi A. // J. Chromatogr. A. 2003. V. 986. № 2. P. 313‒317.
  9. Abolin C., McRae J.D., Tozer T.N., Takki S. // Biochem. Med. 1980. V. 23. № 2. P. 209‒218.
  10. Campos A.F., Cassella R.J. // Food Chem. 2018. V. 269. P. 252‒257.
  11. Cheng Vollmer A., Van Dyk T.K. // Adv. Microb. Physiol. 2004. V. 49. P. 131‒174.
  12. Bazhenov S.V., Novoyatlova U.S., Scheglova E.S., Prazdnova E.V., Mazanko M.S., Kessenikh A.G. et al. // Biosens. Bioelectron. X. 2023. V. 13. https://doi.org/10.1016/j.biosx.2023.100323.
  13. Chistoserdova L., Laukel M., Portais J.C., Vorholt J.A., Lidstrom M.E. // J. Bacteriol. 2004. V. 186. № 1. P. 22‒28.
  14. Godfrey C., Coddington A., Greenwood C., Thomson A.J., Gadsby P.M. // Biochem. J. 1987. V. 243. № 1. P. 225‒233.
  15. Benoit S., Abaibou H., Mandrand-Berthelot M.A. // J. Bacteriol. 1998. V. 180. № 24. P. 6625‒6634.
  16. Sakai Y., Murdanoto A.P., Konishi T., Iwamatsu A., Kato N. // J. Bacteriol. 1997. V. 179. № 14. P. 4480‒4485.
  17. Патент ЕС. 1988. № 0299108A1.
  18. Overkamp K.M., Kötter P., van der Hoek R., Schoondermark-Stolk S., Luttik M.A., van Dijken J.P., Pronk J.T. // Yeast. 2002. V. 19. № 6. P. 509‒520.
  19. Kobayashi A., Taketa M., Sowa K., Kano K., Higuchi Y., Ogata H. // IUCrJ. 2023. V. 10. P. 544‒554.
  20. Патент Великобритания, Германия. 2022. № WO2022008929A1.
  21. Маниатис Т., Фрич Э., Сэмбрук Дж. Методы генетической инженерии. Молекулярное клонирование. Москва: Мир, 1984. 480 с.
  22. Yuzbashev T.V., Yuzbasheva E.Y., Melkina O.E., Patel D., Bubnov D., Dietz H., Ledesma-Amaro R. // Commun. Biol. 2023. V. 6. № 1. P. 858.
  23. Yurimoto H., Komeda T., Lim C.R., Nakagawa T., Kondo K., Kato N., Sakai Y. // Biochim. Biophys. Acta. 2000. V. 1493. P. 56–63.
  24. Hartner F.S., Glieder A. // Microb. Cell Fact. 2006. V. 5. P. 39.
  25. Chen N.H., Djoko K.Y., Veyrier F.J., McEwan A.G. // Front Microbiol. 2016. V. 7. P. 257.
  26. Liu A., Feng R., Liang B. // Enzyme Microb. Technol. 2016. V. 91. P. 59–65.
  27. Buttery J.E., Chamberlain B.R. // J. Anal. Toxicol. 1988. V. 12. № 5. P. 292–294.
  28. Ogata M., Iwamoto T. // Int. Arch. Occup. Environ. Health. 1990. V. 62. № 3. P. 227–232.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Fluorescence (hrGFP) of the yeast strain biomass after cultivation for 20 h on YNB agar medium with 1% glucose without formate (a) and with the addition of 10 mM sodium formate (b). The control strain Y-3178 W29 MatA (wild type) is designated as wt.

下载 (199KB)
3. Fig. 2. Dependence of the normalized optical density (OD) fluorescence of strains A1 (a), B26 (b) and B29 (c) on the incubation time in a medium with sodium formate: 1 ‒ without sodium formate, 2 ‒ 10 μM, 3 ‒ 100 μM, 4 ‒ 1 mM, 5 ‒ 10 mM, 6 ‒ 90 mM, 7 ‒ 440 mM.

下载 (368KB)
4. Fig. 3. Dependence of the maximum response (AR) of strains A1, B26 and B29 on different concentrations of sodium formate. 1 ‒ A1, 2 ‒ B26, 3 ‒ B29.

下载 (84KB)
5. Fig. 4. Effect of carbon sources in the nutrient medium on the activation of the B26 biosensor with the addition of 10 mM formate: 1 ‒ glucose (1%), 2 ‒ glucose and formate, 3 ‒ sorbitol (1.5%), 4 ‒ sorbitol and formate, 5 ‒ mannitol (1%), 6 ‒ mannitol and formate, 7 ‒ citrate (1%), 8 ‒ citrate and formate.

下载 (131KB)
6. Fig. 5. Dependence of the normalized optical density (OD) fluorescence of the B26 biosensor on the incubation time in a nutrient medium containing mannitol (1%) and sodium formate (a), formaldehyde (b) or methanol (c) at concentrations: 1 ‒ without addition, 2 ‒ 10 μM, 3 ‒ 100 μM, 4 ‒ 1 mM, 5 ‒ 10 mM, 6 ‒ 100 mM.

下载 (302KB)

版权所有 © Russian Academy of Sciences, 2024