The influence of light quality and intensity on the development of Solanum tuberosum L. microplants

Cover Page

Cite item

Full Text

Abstract

The paper studies the effect of monochromatic light of the red, green and blue spectrum ranges with different levels of irradiation intensity (30–1400 μmol/s · m2) on the development of potato microplants (Solanum tuberosum L., variety Red Scarlett). The highest values of plant height and weight parameters were observed in samples grown under red light, and the lowest in groups illuminated with blue light. Blue light limited stem growth and contributed more to the formation of large leaves. Morphometric parameters of plants grown under green light were higher than those grown under blue light, but lower than the values of samples from sections with red light. The following illumination intensities were optimal for the development of potato microplants: 500–600 μmol/s · m2 under blue and green light, and 800–1000 μmol/s · m2 under red light.

Full Text

Restricted Access

About the authors

Yuri N. Kulchin

Institute of Automation and Control Processes of FEB RAS

Author for correspondence.
Email: kulchin@iacp.dvo.ru
ORCID iD: 0000-0002-8750-4775

академик РАН, доктор физико-математических наук

Russian Federation, Vladivostok

Irina V. Gafitskaya

Federal Scientific Center of the East Asia Terrestrial Biodiversity of FEB RAS

Email: gafitskaya@biosoil.ru
ORCID iD: 0000-0002-3100-8668

Leading Engineer

Russian Federation, Vladivostok

Olga V. Nakonechnaya

Federal Scientific Center of the East Asia Terrestrial Biodiversity of FEB RAS

Email: markelova@biosoil.ru
ORCID iD: 0000-0002-9825-277X

Candidate of Sciences in Biology, Senior Researcher

Russian Federation, Vladivostok

Sergey O. Kozhanov

Institute of Automation and Control Processes of FEB RAS

Email: kozhanov_57@mail.ru
ORCID iD: 0009-0001-2629-3521

Junior Researcher

Russian Federation, Vladivostok

Alexander S. Kholin

Institute of Automation and Control Processes of FEB RAS

Email: a_kholin@dvo.ru
ORCID iD: 0000-0002-9751-5136

Researcher

Russian Federation, Vladivostok

Evgeny P. Subbotin

Institute of Automation and Control Processes of FEB RAS

Email: s.e.p@list.ru
ORCID iD: 0000-0002-8658-3504

Candidate of Sciences in Physics and Mathematics, Leading Researcher

Russian Federation, Vladivostok

Natalia I. Subbotina

Institute of Automation and Control Processes of FEB RAS

Email: sale789@mail.ru
ORCID iD: 0000-0003-0945-3877

Junior Researcher

Russian Federation, Vladivostok

References

  1. Villavicencio G.E., Gámez V.A.J., Arellano M.A., Almeida H.J., Fernández J. Micropropagation in four potato genotypes and selection on vitroplants size as a survival ex vitro establishment. Acta Horticulturae (The Hague). 2007;748:223–227. https://doi.org/10.17660/ActaHortic.2007.748.30.
  2. Rocha P.S.G., de Oliveira R.P., Scivittaro W.B. New light sources for in vitro potato micropropagation. Bioscience Journal. 2015;31:1312–1318. doi: 10.14393/BJ-v31n5a2015-26601.
  3. Pundir R.K., Pathak A., Upadhyaya D.C., Muthusamy A., Upadhyaya C.P. Red and Blue Light-Emitting Diodes Significantly Improve Tuberization of Potato (L.). Journal of Horticultural Research. 2021;29:95–108. https://doi.org/10.2478/johr-2021-0010.
  4. Jiang L., Wang Z., Jin G., Lu D., Li X. Responses of Favorita Potato Plantlets Cultured in Vitro under Fluorescent and Light-Emitting Diode (LED) Light Sources. American Journal of Potato Research. 2019;96:396–402. https://doi.org/10.1007/s12230-019-09725-8.
  5. Chen Li-li, Zhang Kai, Gong Xiao-chen, Wang Hao-ying, Gao You-hui, Wang Xi-quan, Zeng Zhao-hai, Hu Yue-gao. Effects of different LEDs light spectrum on the growth, leaf anatomy, and chloroplast ultrastructure of potato plantlets in vitro and minituber production after transplanting in the greenhouse. Journal of Integrative Agriculture. 2020;19:108–119. https://doi.org/10.1016/S2095-3119(19)62633-X.
  6. Grishchenko O.V., Subbotin E.P., Gafitskaya I.V., Vereshchagina Y.V., Burkovskaya E.V., Khrolenko Y.A., Grigorchuk V.P., Nakonechnaya O.V., Bulgakov V.P., Kulchin Y.N. Growth of micropropagated Solanum tuberosum L. plantlets under artificial solar spectrum and different mono- and polychromatic LED lights. Horticultural Plant Journal. 2022;8(2):205–214. https://doi.org/10.1016/j.hpj.2021.04.007.
  7. Gafitskaya I.V., Nakonechnaya O.V., Grishchenko O.V., Zhuravlev Y.N., Subbotin E.P., Kulchin Y.N. Intensivnost’ sveta kak regulyator rosta rastenii kartofelya pri mikroklonirovanii = [Light intensity as a growth regulator of potato plants in microcloning]. Aktual’nye problemy kartofelevodstva: fundamental’nye i prikladnye aspekty: materialy Vserossiiskoi nauchno-prakticheskoi konferentsii s mezhdunarodnym uchastiem, 10–13 aprelya 2018 g. Tomsk: Tomsk State University Publishng House; 2018. P. 210–211. (In Russ.).
  8. Kulchin Y.N., Nakonechnaya O.V., Gafitskaya I.V., Grishchenko O.V., Epifanova T.Y., Orlovskaya I.Y., Zhuravlev Y.N., Subbotin E.P. Plant Morphogenesis under Different Light Intensity. Defect and Diffusion Forum. 2018;386:201–206. https://doi.org/10.4028/www.scientific.net/ddf.386.201.
  9. Murashige T., Skoog F. A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiologia Plantarum. 1962;15(3):473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x.
  10. Gafitskaya I.V., Nakonechnaya O.V., Zhuravlev Y.N., Subbotin E.P., Kulchin Y.N. Perspektivy ispol’zovaniya svetodiodnogo izlucheniya pri kul’tivirovanii in vitro rastenii-regenerantov kartofelya = [Prospects for the use of LED radiation in the in vitro cultivation of potato regenerated plants] // Perspektivy fitobiotekhnologii dlya uluchsheniya kachestva zhizni na Severe: sb. materialov III Nauchno-prakticheskoi konferentsii s mezhdunarodnym uchastiem i Nauchnoi shkoly po kletochnoi biotekhnologii, 4–8 iyunya 2018 g. Yakutsk: NEFU Publishing House; 2018. P. 35–37. (In Russ.).
  11. Johkan M., Shoji K., Goto F., Hahida S.N., Yoshihara T. Effect of green light wavelength and intensity on photomorphogenesis and photosynthesis in Lactuca sativa. Environmental and Experimental Botany. 2012;75:128–133. https://doi.org/10.1016/j.envexpbot.2011.08.010.
  12. Liu J., van Iersel M.W. Photosynthetic Physiology of Blue, Green and Red Light: Light Intensity Effects and Underlying Mechanisms. Frontiers in Plant Science. 2021;12:619987. https://doi.org/10.3389/fpls.2021.619987.
  13. Terashima I., Fujita T., Inoue T., Chow W.S., Oguchi R. Green light drives leaf photosynthesis more efficiently than red light in strong white light: revisiting the enigmatic question of why leaves. Plant and Cell Physiology. 2009;50(4):684–697. https://doi.org/10.1093/pcp/pcp034.
  14. Frantz J.M., Joly R.J., Mitchell C.A. Intracanopy lighting influences radiation capture, productivity, and leaf senescence in cowpea canopies. Journal of the American Society for Horticultural Science. 2000;125(6):694–701. https://doi.org/10.21273/JASHS.125.6.694.
  15. Lu N., Maruo T., Johkan M., Hohjo M., Tsukagoshi S., Ito Y., Ichimura T., Shinohara Y. Effects of supplemental lighting with light-emitting diodes (LEDs) on tomato yield and quality of single-truss tomato plants grown at high planting density. Environmental Control in Biology. 2012;50(1):63–74. https://doi.org/10.2525/ecb.50.63.
  16. Smith H.L., McAusland L., Murchie E.H. Don’t ignore the green light: exploring diverse roles in plant processes. Journal of Experimental Botany. 2017;68(9):2099–2110. https://doi.org/10.1093/jxb/erx098.
  17. Kim S.J., Hahn E.J., Hoe J.W., Paek K.Y. Effects of LEDs on net photosynthetic rate, growth and leaf stomata of chrysanthemum plantlets in vitro. Scientia Horticulturae, Amsterdam. 2004;101(1/2):143–151. https://doi.org/10.1016/j.scienta.2003.10.003.
  18. Nakonechnaya O.V., Subbotin E.P., Grishchenko O.V., Gafitskaya I.V., Orlovskaya I.Y., Kholin A.S., Goltsova D.O., Subbotina N.I., Bulgakov V.P., Kulchin Y.N. In vitro potato plantlet development under different polychromatic LED spectra and dynamic illumination. Botanica Pacifica. 2021;10(1):69–74. doi: 10.17581/bp.2021.10102.
  19. Nakonechnaya O.V., Gafitskaya I.V., Burkovskaya E.V., Khrolenko Y.A., Grishchenko, O.V., Zhuravlev Y.N., Subbotin E.P., Kulchin Y.N. Effect of Light Intensity on the Morphogenesis of Stevia rebaudiana under in vitro Conditions. Russian Journal of Plant Physiology. 2019;66(4):656–663. https://doi.org/10.1134/S1021443719040095.
  20. Subbotin E.P., Gafitskaya I.V., Nakonechnaya O.V., Zhuravlev Y.N., Kulchin Y.N. Vliyanie iskusstvennogo solnechnogo sveta na rost i razvitie rastenii-regenerantov Solanum tuberosum = [Effect of artificial sunlight on the growth and development of regenerated Solanum tuberosum plants]. Turczaninowia. 2018;21(2):32–39. (In Russ.).
  21. Kulchin Y.N., Goltsova D.O., Subbotin E.P. Reguliruyushchee deistvie sveta na rasteniya = [Regulating Effect of Light on Plants]. Photonics Russia. 2020;14(2):192–212. https://doi.org/10.22184/1993-7296.FRos.2020.14.2.192.210. (In Russ.).

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Solanum tuberosum explants of Red Scarlett variety in vitro at the initial stage of cultivation

Download (199KB)
3. Fig. 2. Emission spectra of blue (A), green (B) and red (C) light luminaires

Download (139KB)
4. Fig. 3. Smoothed dependences of plant height on irradiance value with trend lines at different spectra

Download (147KB)
5. Fig. 4. Smoothed dependences for the crude mass of the above-ground part of plants on the irradiation intensity at different spectrum with polynomial trend lines

Download (152KB)
6. Fig. 5. Smoothed dependences for root raw weight on irradiation intensity at different spectrum with polynomial trend lines

Download (161KB)
7. Fig. 6. Smoothed dependences for total plant crude weight on irradiation intensity at different spectrum with polynomial trend lines

Download (151KB)

Copyright (c) 2025 Russian Academy of Sciences