Kinematics of the First Wave Faraday Mode on the Side Wall of a Rectangular Vessel
- Authors: Kalinichenko V.A.1
-
Affiliations:
- Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences
- Issue: No 5 (2024)
- Pages: 15-24
- Section: Articles
- URL: https://permmedjournal.ru/1024-7084/article/view/681532
- DOI: https://doi.org/10.31857/S1024708424050025
- EDN: https://elibrary.ru/NRCMTG
- ID: 681532
Cite item
Abstract
New results of experiments on studying the first Faraday wave mode on the surface of a shallow liquid in a rectangular vessel are given. For regular waves, resonance dependences were measured and the wave profiles were analyzed. It is shown that the presence of a moving local surface elevation in the form of a hump is associated with the nonlinearity of wave oscillations of liquid. A comparison is made with a theoretical model of nonlinear gravity waves. The mechanism of breaking the first Faraday wave mode consisting in the formation of a plane jet ejection on the side wall of the vessel as a result of focusing fluid flows in the growing crest and surface hump has been studied.
Full Text

About the authors
V. A. Kalinichenko
Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences
Author for correspondence.
Email: kalin@ipmnet.ru
Russian Federation, Moscow
References
- Hogrefe J.E., Peffley N.L., Goodridge C.L., Shi W.T., Hentschel H.G.E., Lathrop D.P. Power law sinngularities in gravity capillary waves // Physica D. 1998. V. 123. № 1. P.183–205. doi: 10.1016/S0167-2789(98)00120-1
- Zeff B.W., Kleber В, Fineberg J., Lathrop D.P. Singularity dynamics in curvature collapse and jet eruption on a fluid surface // Nature. 2000. V. 403. № 6768. P. 401–404. doi: 10.1038/35000151
- Jiang L., Perlin M., Schultz W.W. Period tripling and energy dissipation of breaking standing waves // J. Fluid Mech. 1998. V. 369. P. 273–299. doi: 10.1017/S0022112098001785
- Калиниченко В.А. О разрушении волн Фарадея и формировании струйного всплеска // Изв. РАН. МЖГ. 2009. № 4. С. 112–122.
- Шулейкин В.В. Физика моря. М.: Изд-во АН СССР, 1953. 990 с.
- Chan E.S., Melville W.K. Deep water plunging wave pressures on a vertical plane wall // Proc. R. Soc. London. Ser. A. 1988. V. 417. № 1852. P. 95–131. doi: 10.1098/rspa.1988.0053
- Лаппо Д.Д., Стрекалов С.С., Завьялов В.К. Нагрузки и воздействия ветровых волн на гидротехнические сооружения. Теория. Инженерные методы. Расчеты. Л. : ВНИИГ им. Б.Е. Веденеева, 1990. 433 c.
- Ibrahim R.A. Assessment of breaking waves and liquid sloshing impact // Nonlinear Dyn. 2020.V. 100. P. 1837–1925. doi: 10.1007/s11071-020-05605-7
- Cooker M.J., Peregrine D.H. Violent motion as near breaking waves meet a vertical wall // Breaking Waves. IUTAM. Berlin: Springer, 1992. P. 291–297. doi: 10.1007/978-3-642-84847-6_32
- Hull P., Müller G. An investigation of breaker heights shapes and pressures // Ocean Eng. 2002. V. 29(1). P. 59–79. doi: 10.1016/s0029-8018(00)00075-5
- Bredmose H., Hunt-Raby A., Jayaratne R., Bullock G.N. The ideal flip-through impact: experimental and numerical investigation // J Eng Math. 2010. V. 67. P. 115–136. doi: 10.1007/s10665-009-9354-3
- Watanabe Y., Ingram D.M. Transverse instabilities of ascending planar jets formed by wave impacts on vertical walls // Proc. R. Soc. 2015. V. A471: 20150397. doi: 10.1098/rspa.2015.039
- Lugni C., Brocchini M., Faltinsen O.M. Wave impact loads: the role of the flip-through // Phys. Fluids. 2006. V. 18. Р. 122101. doi: 10.1063/1.2399077
- Korkmaz F.C., Güzel B. Insights from sloshing experiments in a rectangular hydrophobic tank // Exp. Therm. Fluid Sci. 2023. Vol. 146. Р. 110920. doi: 10.1016/j.expthermflusci.2023.110920
- Калиниченко В.А., Нестеров С.В., Секерж-Зенькович С.Я., Чайковский А.А. Экспериментальное исследование поверхностных волн при резонансе Фарадея // Изв. РАН. МЖГ. 1995. № 1. С. 122–129.
- Калиниченко В.А. Частоты и профили стоячих изгибно-гравитационных волн // Изв. РАН. МЖГ. 2023. № 5. С. 103–109. doi: 10.31857/S1024708423600306
- Нестеров С.В. Параметрическое возбуждение волн на поверхности тяжелой жидкости // Морские гидрофиз. исследования. 1969. № 3(45). С. 87–97.
- Sekerj-Zenkovitch S.Ya., Bordakov G.A., Kalinitchenko V.A., Shingareva I.K. Faraday Resonance in water waves at nearly critical depths // Exp. Therm. Fluid Scie. 1998. V.18. No. 2. P. 123–133. doi: 10.1016/S0894-1777(98)10020-1
- Секерж-Зенькович Я.И. К теории стоячих волн конечной амплитуды на поверхности тяжелой жидкости // Докл. АН СССР. 1947. Т. 8. № 4. С. 551–553.
Supplementary files
