Electrostatic Discharges During the Joint Impact of Electrons and Electromagnetic Radiation on Glass K-208

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Electrostatic discharges and radiation-stimulated leakage currents were studied under separate and combined action of 10–40 keV electrons and solar electromagnetic radiation on K-208 glass samples used as cover glass for solar batteries and reflective elements for spacecraft thermal radiators. The values of the electron flux density (φ) were changed in the range of (5 × 108–1 × 1011) cm–2 · s–1, the electromagnetic radiation flux corresponded to one equivalent of solar illumination. Irradiation was carried out in a vacuum of 10–4 Pa. During irradiation, two types of discharges were observed: the first type is a discharge from a cone-shaped microprotrusion on the glass surface into the surrounding ionized medium; the second type of discharge developed along the irradiated surface leaving about 100 nm wide and up to 2 nm deep discharge channels on it. Discharges of both types were accompanied by plasma emissions and generation of electromagnetic pulses. The dependences of the discharge frequency and leakage currents on the parameter φ for electron and combined irradiation were obtained. It was found that for fixed electron energy, discharges of the second type on the samples surface in the case of combined irradiation occur at a lower φ value than in the case of electron irradiation. It was also found that with combined action the share of breakdowns of cover glass samples on the conductive substrate in the events recorded in the experiments increases significantly. The share of breakdowns of glass samples also increases with increasing energy of the impacting electrons.

Texto integral

Acesso é fechado

Sobre autores

R. Khasanshin

Kompozit JSC; Bauman Moscow State Technical University

Autor responsável pela correspondência
Email: rhkhas@mail.ru
Rússia, Korolyov; Moscow

L. Novikov

Lomonosov Moscow State University

Email: rhkhas@mail.ru
Rússia, Moscow

D. Uvarov

Kompozit JSC

Email: rhkhas@mail.ru
Rússia, Korolyov

Bibliografia

  1. Norris C.B., Eernisse E.P. // J. Appl. Phys. 1974. V. 45. Iss. 9. P. 3876. https://doi.org/10.1063/1.1663878
  2. Primak W., Kampwirt R. // J. Appl. Phys. 1968. V. 39. Iss. 12. P. 5651. https://doi.org/10.1063/1.1656029
  3. Gavenda T., Gedeon O., Jurek K. // Nucl. Instrum. Methods Phys. Res. B. 2014 V. 322. P. 7. https://doi.org/10.1016/j.nimb.2013.12.017
  4. Ollier N., Boizot B., Reynard B., Ghaleb D., Petite G. // J. Nucl. Mater. 2005. V. 340. P. 209.
  5. Boizot B., Petite G., Ghaleb D., Pellerin N., Fayon F., Reynard B., Calas G. // Nucl. Instrum. Methods Phys. Res. B. 2000. V. 166. P. 500.
  6. Chen L., Wang T.S., Zhang G.F., Yang K.J., Peng H.B., Zhang L.M. // Chin. Phys. B. 2013. V. 22. P. 126101.
  7. Хасаншин Р.Х., Новиков Л.С., Применко Д.А. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2020. № 9. С. 47. https://doi.org/10.31857/S1028096020090113
  8. Хасаншин Р.Х., Новиков Л.С., Коровин С.Б. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2017. № 9. С. 28. https://doi.org/10.7868/S0207352817090049
  9. Ferguson D.C., Wimberly S.C. The Best GEO Daytime Spacecraft Charging Index. // Proc. 50th AIAA Aerospace Sci. Mtg, Dallas, Texas. 2013. P. AIAA 2013-0810. https://doi.org/10.2514/6.2013-810
  10. Messenger S.R., Wong F., Hoang B., Cress C.D., Walters R.J., Kleuver C.A., Jones G. // IEEE Trans. Nucl. Sci. 2014. V. 61. № 6. P. 3348. https://doi.org/10.1109/TNS.2014.2364894
  11. Toyoda K., Okumura T., Hosoda S., Cho M. // J. Spacecraft Rockets. 2005. V. 42. № 5. P. 947. https://doi.org/https://doi.org/10.2514/1.11602
  12. Liu Y., Feng W., Wang S., Huang J., Tang X., Wang Zh. GEO Spacecraft potential estimation in worst-case environment by SPIS. // Proc. 14th Spacecraft Charging Technology Conference, ESA/ESTEC, Noordwijk, NL. 2016.
  13. Модель космоса. Вып. 8. Т. 2. / Ред. Новиков Л.С. М.: Изд. МГУ, 2007.
  14. Zhang G.F., Wang T.S., Yang K.J., Chen L., Zhang L.M., Peng H.B, Yuan W., Tian, F. // Nucl. Instr. Methods Phys. Res. B. 2013. V. 316. P. 218. https://doi.org/10.1016/j.nimb
  15. Boizot B., Petite G., Ghaleb D., Reynard B., Calas G. // J. Non-Cryst. Solids. 1999. V. 243. P. 268.
  16. Boizot B., Petite G., Ghaleb D., Calas G. // J. Non-Cryst. Solids. 2001. V. 283. P. 179.
  17. Sun K., Wang L.M., Ewing R.C., Weber W.J. // Philos. Mag. 2005. V. 85. P. 597.
  18. Chen L., Wang T.S., Zhang G.F., Yang K.J., Peng H.B., Zhang L.M. // Chinese. Phys. B. 2013. V. 22. P. 126101.
  19. Masui H., Toyoda K., Cho M. // IEEE Trans. Plasma Sci. 2008. V. 36. P. 2387. https://doi.org/10.1109/TPS.2008.2003191
  20. Khasanshin R.H., Novikov L.S. // IEEE Trans. Plasma Sci. 2019. V: 47. № 8. P. 3796. https://doi.org/10.1109/TPS.2019.2916210
  21. Ferguson D.C., Katz I. // IEEE Trans. Plasma Sci. 2015. V. 43. № 9. P. 3021. https://doi.org/10.1109/TPS.2015.2432718
  22. Cho M., Kawakita S., Nakamura M., Takahashi M., Sato T., Nozaki Y. // J. Spacecraft Rockets. 2005. V. 42. № 4. P. 740. https://doi.org/10.2514/1.6694
  23. Khasanshin R.H., Novikov L.S. // Adv. Space Res. 2016. V. 57. P. 2187. http://dx.doi.org/10.1016/j.asr.2016.02.23
  24. Purvis C., Garrett H.B., Whittlesey A.C., Stevens N.J. // NASA Tech. 1984. P. 2361.
  25. Свечкин В.П., Савельев А.А., Соколова С.П., Бороздина О.В. // Космич. техника и технология. 2017. № 2. С. 99.
  26. Хасаншин Р.Х., Новиков Л.С. // Перспективные материалы. 2023. № 1. С. 19. https://doi.org/10.30791/1028-978X-2023-1-19-27
  27. Хасаншин Р.Х., Уваров Д.В. // Известия РАН: Сер. физ. 2024. Т. 88. № 4. C. 454.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Characteristic shapes of oscillograms of currents induced in the antenna during discharges of the first type (a) and during breakdowns on a conducting substrate (b) at electron flux density φ = 4.6 × 109 cm-2 - s-1.

Baixar (100KB)
3. Fig. 2. Dependences of leakage current at electronic (1) and joint (2) irradiation of reflecting element samples.

Baixar (66KB)
4. Fig. 3. AFM images of the surface of the cover glass sample: a - fragment of 2 × 2 µm; b - cross-section of the fragment along line 1-2 at electron flux density φ = 6.2 × 1010 cm-2 - s-1; fluence Φ = 1014 cm-2.

Baixar (222KB)
5. Fig. 4. AFM-images of the surface of the cover glass sample: a - fragment of 2.5 × 2.5 µm; b - cross-section of the fragment along lines 1-2 (1) and 3-4 (2); c - three-dimensional image of the fragment of 2.5 × 2.5 µm.

Baixar (314KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025