Mechanisms of Methyl Group Elimination from Low-k Dielectric Surfaces by Plasma of Various Composition

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Low-k dielectrics are applied as interlayer isolators between metallic (cuprum) interconnects in very large integrated circuits. Diffusion of Cu atoms can lead to their degradation, and the most efficient way to solve this problem is the fabrication of ultra-thin metal barrier layers. However, this process is complicated by the non-flatness of low-k surface and the presence of hydrophobic CH3-groups preventing the metal deposition. Therefore, before the barrier coating it is necessary to perform preliminary surface functionalization aimed at removing methyl groups. In this work the dynamic density functional theory-based simulation of radical and ion irradiation of low-k surface for plasma of various composition (noble gases, molecular nitrogen and oxygen) was carried out to study the mechanisms of methyl group removal. The results obtained showed the possibility of this process for low-energy range (10–15 eV) of incident particles. In this work the detailed analysis of the calculated trajectories is presented, the interactions of CH3-groups with noble gas atoms (Ne, He) and with more chemically active N and O atoms were compared, the peculiarities of methyl group removal under molecule and molecular ion irradiation were described.

全文:

受限制的访问

作者简介

A. Sycheva

Lomonosov Moscow State University

Email: solovykh.aa19@physics.msu.ru
俄罗斯联邦, Moscow

A. Solovykh

Lomonosov Moscow State University

编辑信件的主要联系方式.
Email: solovykh.aa19@physics.msu.ru
俄罗斯联邦, Moscow

E. Voronina

Lomonosov Moscow State University

Email: solovykh.aa19@physics.msu.ru
俄罗斯联邦, Moscow

参考

  1. Baklanov M.R., Ho P.S., Zschech E. Advanced Interconnects for ULSI Technology. Wiley & Sons, 2012. 596 p.
  2. Jenkins M., Austin D.Z., Conley J.F., Fan J., de Groot C.H., Jiang L., Fan Ye, Ali R., Ghosh G., Orlowski M. // ECS J. Solid State Sci. Technol. 2019. V. 8. P. 159. https://www.doi.org/10.1149/2.0161910jss
  3. Volksen W., Miller R.D., Dubois G. // Chem. Rev. 2010. V. 110. P. 56. https://www.doi.org/10.1021/cr9002819
  4. Baklanov M.R., de Marneffe J.-F., Shamiryan D., Urbanowicz A.M., Shi H., Rakhimova T.V., Huang H., Ho P.S. // J. Appl. Phys. 2013. V. 113. P. 041101. https://www.doi.org/10.1063/1.4765297
  5. Rakhimova T.V., Lopaev D.V., Mankelevich Yu.A., Kurchikov K.A., Zyryanov S.M., Palov A.P., Proshina O.V., Maslakov K.I., Baklanov M.R. // J. Phys. D. 2015. V. 48. P. 175204. https://www.doi.org/10.1088/0022-3727/48/17/175204
  6. Braginsky O.V., Kovalev A.S., Lopaev D.V., Malykhin E.M., Mankelevich Yu.A., Rakhimova T.V., Rakhimov A.T., Vasilieva A.N., Zyryanov S.M., Baklanov M.R. // J. Appl. Phys. 2010. V. 108. P. 073303. https://www.doi.org/10.1063/1.3486084
  7. Yamamoto H., Takeda K., Ishikawa K., Ito M., Sekine M., Hori M., Kaminatsui T., Hayashi H., Sakai I., Ohiwa T. // J. Appl. Phys. 2011. V. 109. P. 084112. https://www.doi.org/10.1063/1.3562161
  8. Matsunaga N., Okumura H., Jinnai B., Samukawa S. // Jpn. J. Appl. Phys. 2010. V. 49. https://www.doi.org/10.1143/JJAP.49.04DB06
  9. Kunnen E., Baklanov M.R., Franquet A., Shamiryan D., Rakhimova T.V., Urbanowicz A.M., Struyf H., Boullart W. // J. Vac. Sci. Technol. B. 2010. V. 28. № 3. P. 450. https://www.doi.org/10.1116/1.3372838
  10. Sycheva A.A., Voronina E.N., Rakhimova T.V., Rakhimov A.T. // Appl. Surf. Sci. 2019. V. 475. P. 1021. https://www.doi.org/10.1016/j.apsusc.2019.01.078
  11. Xu H., Hu Zh.-J., Qu X.-P., Wan H., Yan Sh.-S., Li M., Chen Sh.-M., Zhao Y.-H., Zhang J., Baklanov M.R. // Appl. Surf. Sci. 2019. V. 498. P. 143887. https://www.doi.org/10.1016/j.apsusc.2019.143887
  12. Lionti K., Volksen W., Magbitang T., Darnon M., Dubois G. // ECS J. Solid State Sci. Technol. 2014. V. 4. P. 3071. https://www.doi.org/10.1149/2.0081501jss
  13. Walton S.G., Hernández S.C., Boris D.R., Petrova Tz.B., Petrov G.M. // J. Phys. D: Appl. Phys. 2017. V. 50. P. 354001. https://www.doi.org/10.1088/1361-6463/aa7d12
  14. Palov A.P., Proshina O.V., Rakhimova T.V., Rakhimov A.T., Voronina E.N. // Plasma Process. Polym. 2021. V. 18. P. 2100007. https://www.doi.org/10.1002/ppap.202100007
  15. Voronina E.N., Sycheva A.A., Solovykh A.A., Proshina O.V., Rakhimova T.V., Palov A.P., Rakhimov A.T. // J. Vac. Sci. Technol. B. 2022. V. 40. P. 062203. https://www.doi.org/10.1116/6.0002006
  16. Jensen F. Introduction to Computational Chemistry. Wiley & Sons, 2007. 620. p.
  17. Кон В., Попл Дж.А. // Усп. физ. наук. 2002. Т. 172. С. 335. https://www.doi.org/10.3367/UFNr.0172.200203d.0335
  18. Rakhimova T.V., Braginsky O.V., Ivanov V.V., Kovalev A.S., Lopaev D.V., Mankelevich Yu.A. // IEEE Trans. Plasma Sci. 2007. V. 35. P. 1229. https://www.doi.org/10.1109/TPS.2007.905201
  19. Kovalev A.S., Kurchikov K.A., Proshina O.V., Rakhimova T.V., Vasilieva A.N., Voloshin D.G. // Phys. Plasmas. 2019. V. 26. P. 123501. https://www.doi.org/10.1063/1.5123989
  20. Kresse G., Joubert D. // Phys. Rev. B. 1999. V. 59. P. 1758. https://www.doi.org/10.1103/PhysRevB.59.1758
  21. Perdew J.P., Ruzsinszky A., Tao J. // J. Chem. Phys. 2005. V. 123. P. 062201. https://www.doi.org/10.1063/1.1904565
  22. Kresse G., Furthmüller J. // Phys. Rev. B. 1996. V. 54. P. 11169. https://www.doi.org/10.1103/PhysRevB.54.11169
  23. Blöchl P.E. // Phys. Rev. B. 1994. V. 50. P. 17953. https://www.doi.org/10.1103/PhysRevB.50.17953
  24. Chaudhari M., Du J. // J. Vac. Sci. Technol. A. 2011. V. 29. P. 031303. https://www.doi.org/10.1116/1.3568963
  25. Rimsza J.M., Kelber J.A., Du J. // J. Phys. D: Appl. Phys. 2014. V. 47. P. 335204. https://www.doi.org/10.1088/0022-3727/47/33/ 335204
  26. Kazi H., Rimsza J., Du J. // J. Vac. Sci. Technol. A. 2014. V. 32. P. 051301. https://www.doi.org/10.1116/1.4890119
  27. Соловых А.А., Сычева А.А., Воронина Е.Н. // Письма в ЖТФ. 2022. Т. 48. С. 19. https://www.doi.org/10.21883/PJTF.2022.07.52286. 19085
  28. Voevodin V.V., Antonov A.S., Nikitenko D.A., Shvets P.A., Sobolev S.I., Sidorov I.Yu., Stefanov K.S., Voevodin V.V., Zhumatiy S.A. // Supercomput. Front. Innovations. 2019. V. 6. P. 4. https://www.doi.org/10.14529/jsfi190201
  29. Humphrey W., Dalke A., Schulten K. // J. Mol. Graphics. 1996. V. 14. P. 33. https://www.doi.org/10.1016/0263-7855(96)00018-5
  30. Darwent B. // Nat. Stand. Ref. Data Ser. NSRDS-NBS 31. Nat. Bur. Stand. 1970. P. 52. https://www.doi.org/10.6028/NBS.NSRDS.31
  31. Соловых А.А., Сычева А.А., Воронина Е.Н. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2023. № 2. С. 63. https://www.doi.org/10.1134/S1027451023010391
  32. Ландау Л.Д., Лифшиц Е.М. Теоретическая физика: Т. 1. Механика. М.: Наука. 1988, 224. с.
  33. Balucani N. // Chem. Soc. Rev. 2012. V. 41. Iss. 16. P. 5473. https://www.doi.org/10.1039/c2cs35113g
  34. Voronina E.N., Mankelevich Yu.A., Rakhimova T.V., Lopaev D.V. // J. Vacuum Sci. Technol. A. 2019. V. 37. Iss. 6. P. 061304. https://www.doi.org/10.1116/1.5122655
  35. Balucani N., Bergeat A., Cartechini L., Volpi G.G., Casavecchia P., Skouteris D., Rosi M. // J. Phys. Chem. A. 2009. V. 113. Iss. 42. P. 11138. https://www.doi.org/10.1021/jp904302g
  36. Lopaev D.V., Zyryanov S.M., Zotovich A.I., Rakhimova T.V., Mankelevich Yu.A., Voronina E.N. // J. Physics D. Appl. Phys. 2020. V. 53. P. 175203. https://www.doi.org/10.1088/1361-6463/ab6e99
  37. Tait K.S., Kolb C.E., Baum H.R. // J. Chem. Phys. 1973. V. 59. Iss. 6. P. 3128. https://www.doi.org/10.1063/1.1680454
  38. Герцберг Г. Спектры и строение двухатомных молекул. Москва: Изд-во иностр. лит. 1949. 404. с.
  39. Sadeghi N., Foissac C., Supiot P. // J. Phys. D Appl. Phys. 2001. V. 34. P. 1779. https://www.doi.org/10.1088/0022-3727/34/12/304

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Schematic representation of the groove and impacting ions (a); model of the PSS molecule for the case of perpendicular and parallel orientations of the colliding N2 molecule (b): black large circles indicate O atoms; light large circles - Si; light large circles - Si; small circles - H; grey circle represents the C atom. The arrow shows the direction of motion of the colliding molecule, and the atoms fixed during modelling are marked with an oval.

下载 (169KB)
3. Fig. 2. Calculated consecutive positions of atoms when exposed to Ne (a) and He (b) atoms with E0 = 15 eV during the first ∼ 100 fs of the interaction process. The dots mark the trajectories of motion of C atoms. Time dependences (c) of the energy of motion of the centre of mass Ecm (dotted line), the total kinetic energy of the methyl group Etot (solid line) and the kinetic energy of the colliding atom: Ne (1, 3) He (2, 4). Variation of C-N (1, 2) and C-H (3, 4) distances as a function of time (d) when exposed to He (1, 3) and Ne (2, 4) atoms with E0 = 15 eV.

下载 (334KB)
4. Fig. 3. Calculated successive positions of atoms under the influence of atom (opaque atoms) and ion (transparent atoms) Ne during the first ∼ 140 fs of the interaction process (a). Time dependences (b) of the value of the O-Si-O valence angle (1, 2); distances between Si atoms and the centre of mass of the POCS molecule (3, 4); Si and the nearest O atom (5, 6) during the interaction with the atom (2, 3, 5) and ion (1, 4, 6) Ne with E0 = 15 eV.

下载 (196KB)
5. Fig. 4. Time dependences (a) of the kinetic energy of a colliding N atom with E0 = 4 (1); 1 eV (2). Variation of C-N distances at E0 = 1 (1); 4 eV (2); Si-C at E0 = 4 eV (3) as a function of time.

下载 (129KB)
6. Fig. 5. Calculated successive positions of atoms under the influence of the N2 molecule at E0 = 10 (a, b) and 20 eV (c) for parallel (a) and perpendicular (b, c) orientations of the colliding molecule during the first ∼ 160 fs of the interaction process. The dots indicate the trajectories of N and C atoms.

下载 (158KB)
7. Fig. 6. Time dependences of translational energy Ecm (dashed lines) and total kinetic energy Etot (solid lines) (a); kinetic energy of rotational-vibrational motion Evr (b) of the N2 molecule at E0 = 20 (1); 10 eV (2). The ratio Evr / Etot as a function of E0 at perpendicular (1) and parallel (2) orientation of the colliding ion.

下载 (118KB)
8. Fig. 7. Calculated successive positions of atoms under the influence of the O2 molecule at perpendicular orientation of the colliding molecule at E0 = 10 (a) and 15 eV (b) during the first ∼ 140 fs of the interaction process. The dots mark the trajectories of the O and C atoms. Time dependences (c) of Etot (solid lines) and Ecm (dashed lines) of the CH3 radical after impact of an O2 molecule with energy E0 = 20 (1); 15 (2); 10 (3); 5 eV (4) at perpendicular orientation of the colliding molecule.

下载 (183KB)
9. Fig. 8. Calculated successive positions of atoms under the influence of O2+ ion with E0 = 10 (a) and 20 eV (b) and N2+ with E0 = 20 eV (c) at perpendicular orientation of the flying molecule during the first ∼ 130 fs of the interaction process. Time dependences of the kinetic energy of the departing O2 molecule at initial energy of the O2+ ion E0 = 20 eV (c); energy Ecm (dashed line), Etot (solid line) (d); rotational energy (dotted line) and rotational-vibrational energy (solid line) (e).

下载 (306KB)

版权所有 © Russian Academy of Sciences, 2025