Influence of Solar Electromagnetic Radiation on the Optical Properties of Micro-, Submicro- and Nanopowders of ZnO
- 作者: Verkhoturova I.V.1, Neshchimenko V.V.1, Mikhailov M.M.2
-
隶属关系:
- Аmur State University
- Tomsk State University of Control Systems and Radioelectronics
- 期: 编号 2 (2025)
- 页面: 46-52
- 栏目: Articles
- URL: https://permmedjournal.ru/1028-0960/article/view/686786
- DOI: https://doi.org/10.31857/S1028096025020066
- EDN: https://elibrary.ru/EHIFJN
- ID: 686786
如何引用文章
详细
The diffuse reflection spectra of micro-, submicro- and nanopowders of ZnO after irradiation with solar electromagnetic radiation were researcherd. High purity ZnO powders purchased from Aladdin Chemistry were used. Average particle sizes of the studied powders were: from 800 to 3000 nm for micropowders, from 100 to 300 nm for submicropowders, 20–50 nm for nanopowders. Irradiation of the powders under study with electromagnetic radiation from the Solar was carried out for 2, 5, 10 and 15 h. The research results showed that the reflectivity of the surface of zinc oxide micropowders in the wavelength range from 200 to 2000 nm is higher than that of submicro- and nanopowders. The contribution to the formation of the integral absorption band responsible for the degradation of the optical properties of ZnO micro- and nanopowders is made by induced defects of the cationic sublattice, and of submicropowders — defects of the anionic sublattice and acceptor-donor pairs. Approximately the same intensity of absorption bands of defects in ZnO submicropowders explains the small change in the integral absorption coefficient of solar radiation for this type of powder. This explains the higher radiation resistance of zinc oxide submicropowders to the action of solar spectrum quanta under the same irradiation conditions.
全文:

作者简介
I. Verkhoturova
Аmur State University
编辑信件的主要联系方式.
Email: rusia@mail.ru
俄罗斯联邦, Blagoveshchensk
V. Neshchimenko
Аmur State University
Email: v1ta1y@mail.ru
俄罗斯联邦, Blagoveshchensk
M. Mikhailov
Tomsk State University of Control Systems and Radioelectronics
Email: rusia@mail.ru
俄罗斯联邦, Tomsk
参考
- Sokolovskiy A., Plis E., Hoffmann R., Bengtson M., Ferguson D. // Surf. Coat. Technol. 2022. V. 451. Р. 129030. https://www.doi.org/10.1016/j.surfcoat.2022.129030
- Kiomarsipour N., Razavi R. S., Ghani K. // Dyes and Pigments. 2013. V. 96. P. 403. https://www.doi.org/10.1016/j.dyepig.2012.08.019
- Михайлов М.М., Лапин А.Н., Юрьев С.А. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2021. № 9. С. 63. https://www.doi.org/10.31857/S1028096021090107
- Lv J., Yang J., Li X., Chai Z. // Dyes and Pigments. 2019. V. 164. P. 87. https://www.doi.org/10.1016/j.dyepig.2019.01.014
- Юрина В.Ю., Дудин А.Н., Нещименко В.В., Михайлов М.М. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2023. № 2. С. 33. https://www.doi.org/10.17223/00213411/65/8/3
- Дудин А.Н., Юрина В.Ю., Нещименко В.В., Ли Ч. // Научно-технические ведомости СПбГПУ. Физико-математические науки. 2022. Т. 15. № 3.1. С. 101. https://www.doi.org/10.18721/JPM.153.117
- Lv J., Fang M. // Mater. Lett. 2018. V. 218. P. 18. https://www.doi.org/10.1016/j.matlet.2018.01.137
- Neshchimenko V., Li Ch., Mikhailov M., Lv J. // Nanoscale. 2018. V. 10. Iss. 47. P. 22335. https://www.doi.org/10.1039/C8NR04455D
- Нещименко В.В., Ли Ч., Михайлов М.М. //Поверхность. Рентген., синхротр. и нейтрон. исслед. 2019. № 1. С. 88. https://www.doi.org/10.1134/S0207352819010165
- Нещименко В.В. Структура, свойства и радиационная стойкость оксидных микро- и нанопорошков и отражающих покрытий, изготовленных на их основе: Дис. д-ра физ.-мат. наук: 01.04.07. Томск: ТУСУР, 2017. 273 с.
- Mikhailov M.M., Yuryev S.A., Lapin A.N., Karanskiy V.V. // Symmetry. 2020. V. 12. P. 1021. https://www.doi.org/10.3390/sym12061021
- Верхотурова И.В., Нещименко В.В., Юрина В.Ю., Бурова А.И. // Вестник АмГУ. Естественные и экономические науки. 2022. № 97. С. 28. https://www.doi.org/10.22250/20730268_2022_97_28
- Kositsyn L.G., Mikhailov M.M., Kuznetsov N.Ya., Dvoretskii M.I. // Instrum. Exp. Tech. 1985. V. 28. № 4. P. 929.
- ASTM E490-00a. Standard Solar Constant and Zero Air Mass Solar Spectral Irradiance Tables. West Conshohocken: ASTM International, 2019.
- ASTM E903-96. Standard Test Method for Solar Absorptance, Reflectance, and Transmittance of Materials Using Integrating Spheres. West Conshohocken: ASTM International, 2012.
- Varley J.H.O. // Nature. 1954. V. 174. P. 886.
- Воробьев А.А., Завадовская Е.К., Анненков Ю.М., Лисицын В.М., Воробьев В.С. // Известия Томского ордена трудового красного знамени политехнического Института им. С.М. Кирова. 1969. Т. 199. С. 119.
- Крегер Ф. Химия несовершенных кристаллов. М.: Мир, 1969. 654 с.
补充文件
