An Overview of the Deubiquitinase USP53: A Promising Diagnostic Marker and Therapeutic Target


Цитировать

Полный текст

Аннотация

:Ubiquitination and deubiquitination are important mechanisms to maintain normal physiological activities, and their disorders or imbalances can lead to various diseases. As a subgroup of deubiquitinases (DUBs), the ubiquitin-specific peptidase (USP) family is closely related to many biological processes. USP53, one of the family members, is widely expressed in human tissues and participates in a variety of life activities, such as cell apoptosis, nerve transmission, and bone remodeling. Mutations in the USP53 gene can cause cholestasis and deafness and may also be a potential cause of schizophrenia. Knockout of USP53 can alleviate neuropathic pain induced by chronic constriction injury. Loss of USP53 up-regulates RANKL expression, promotes the cytogenesis and functional activity of osteoclasts, and triggers osteodestructive diseases. USP53 plays a tumor-suppressive role in lung cancer, renal clear cell carcinoma, colorectal cancer, liver cancer, and esophageal cancer but reduces the radiosensitivity of cervical cancer and esophageal cancer to induce radioresistance. Through the in-depth combination of literature and bioinformatics, this review suggested that USP53 may be a good potential biomarker or therapeutic target for diseases.

Об авторах

Guangce Xia

First College of Clinical Medicine,, Hebei North University

Email: info@benthamscience.net

Yulin Guo

First College of Clinical Medicine,, Hebei North University

Email: info@benthamscience.net

Jiajia Zhang

First College of Clinical Medicine,, Hebei North University

Email: info@benthamscience.net

Meng Han

Breast Disease Diagnosis and Treatment Center, First Hospital of Qinhuangdao

Автор, ответственный за переписку.
Email: info@benthamscience.net

Xiangchao Meng

Breast Disease Diagnosis and Treatment Center, First Hospital of Qinhuangdao

Автор, ответственный за переписку.
Email: info@benthamscience.net

Ji Lv

Breast Disease Diagnosis and Treatment Center, First Hospital of Qinhuangdao

Email: info@benthamscience.net

Список литературы

  1. Duechler, M.; Leszczyńska, G.; Sochacka, E.; Nawrot, B. Nucleoside modifications in the regulation of gene expression: focus on tRNA. Cell. Mol. Life Sci., 2016, 73(16), 3075-3095. doi: 10.1007/s00018-016-2217-y PMID: 27094388
  2. Chen, K.; Zhao, B.S.; He, C. Nucleic Acid Modifications in regulation of gene expression. Cell Chem. Biol., 2016, 23(1), 74-85. doi: 10.1016/j.chembiol.2015.11.007 PMID: 26933737
  3. Iglesias-Platas, I.; Monk, D. Nongenomic regulation of gene expression. Curr. Opin. Pediatr., 2016, 28(4), 521-528. doi: 10.1097/MOP.0000000000000365 PMID: 27139000
  4. Corbett, A.H. Post-transcriptional regulation of gene expression and human disease. Curr. Opin. Cell Biol., 2018, 52, 96-104. doi: 10.1016/j.ceb.2018.02.011 PMID: 29518673
  5. Wang, S.; Osgood, A.O.; Chatterjee, A. Uncovering post-translational modification-associated protein–protein interactions. Curr. Opin. Struct. Biol., 2022, 74, 102352. doi: 10.1016/j.sbi.2022.102352 PMID: 35334254
  6. Manna, S.; Mishra, J.; Baral, T.; Kirtana, R.; Nandi, P.; Roy, A.; Chakraborty, S.; Niharika; Patra, S.K. Epigenetic signaling and crosstalk in regulation of gene expression and disease progression. Epigenomics, 2023, 15(14), 723-740. doi: 10.2217/epi-2023-0235 PMID: 37661861
  7. Li, W.; Li, F.; Zhang, X.; Lin, H.K.; Xu, C. Insights into the post-translational modification and its emerging role in shaping the tumor microenvironment. Signal Transduct. Target. Ther., 2021, 6(1), 422. doi: 10.1038/s41392-021-00825-8 PMID: 34924561
  8. Lee, J.M.; Hammarén, H.M.; Savitski, M.M.; Baek, S.H. Control of protein stability by post-translational modifications. Nat. Commun., 2023, 14(1), 201. doi: 10.1038/s41467-023-35795-8 PMID: 36639369
  9. Baker, H.A.; Bernardini, J.P. It’s not just a phase; ubiquitination in cytosolic protein quality control. Biochem. Soc. Trans., 2021, 49(1), 365-377. doi: 10.1042/BST20200694 PMID: 33634825
  10. Roberts, J.Z.; Crawford, N.; Longley, D.B. The role of Ubiquitination in Apoptosis and Necroptosis. Cell Death Differ., 2022, 29(2), 272-284. doi: 10.1038/s41418-021-00922-9 PMID: 34912054
  11. Li, Y.; Li, S.; Wu, H. Ubiquitination-Proteasome System (UPS) and autophagy two main protein degradation machineries in response to cell stress. Cells, 2022, 11(5), 851. doi: 10.3390/cells11050851 PMID: 35269473
  12. Sun, T.; Liu, Z.; Yang, Q. The role of ubiquitination and deubiquitination in cancer metabolism. Mol. Cancer, 2020, 19(1), 146. doi: 10.1186/s12943-020-01262-x PMID: 33004065
  13. Schauer, N.J.; Magin, R.S.; Liu, X.; Doherty, L.M.; Buhrlage, S.J. Advances in Discovering Deubiquitinating Enzyme (DUB) inhibitors. J. Med. Chem., 2020, 63(6), 2731-2750. doi: 10.1021/acs.jmedchem.9b01138 PMID: 31682427
  14. Zhao, J.; Guo, J.; Wang, Y.; Ma, Q.; Shi, Y.; Cheng, F.; Lu, Q.; Fu, W.; Ouyang, G.; Zhang, J.; Xu, Q.; Hu, X. Research progress of DUB enzyme in hepatocellular carcinoma. Front. Oncol., 2022, 12, 920287. doi: 10.3389/fonc.2022.920287 PMID: 35875077
  15. Mennerich, D.; Kubaichuk, K.; Kietzmann, T. DUBs, hypoxia, and cancer. Trends Cancer, 2019, 5(10), 632-653. doi: 10.1016/j.trecan.2019.08.005 PMID: 31706510
  16. Miekus, K.; Kotlinowski, J.; Lichawska-Cieslar, A.; Rys, J.; Jura, J. Activity of MCPIP1 RNase in tumor associated processes. J. Exp. Clin. Cancer Res., 2019, 38(1), 421. doi: 10.1186/s13046-019-1430-6 PMID: 31639017
  17. Calistri, A.; Munegato, D.; Toffoletto, M.; Celestino, M.; Franchin, E.; Comin, A.; Sartori, E.; Salata, C.; Parolin, C.; Palù, G. Functional interaction between the ESCRT-I component TSG101 and the HSV-1 tegument ubiquitin specific protease. J. Cell. Physiol., 2015, 230(8), 1794-1806. doi: 10.1002/jcp.24890 PMID: 25510868
  18. Snyder, N.A.; Silva, G.M. Deubiquitinating enzymes (DUBs): Regulation, homeostasis, and oxidative stress response. J. Biol. Chem., 2021, 297(3), 101077. doi: 10.1016/j.jbc.2021.101077 PMID: 34391779
  19. Liu, J.; Cheng, Y.; Zheng, M.; Yuan, B.; Wang, Z.; Li, X.; Yin, J.; Ye, M.; Song, Y. Targeting the ubiquitination/deubiquitination process to regulate immune checkpoint pathways. Signal Transduct. Target. Ther., 2021, 6(1), 28. doi: 10.1038/s41392-020-00418-x PMID: 33479196
  20. Park, H.B.; Kim, J.W.; Baek, K.H. Regulation of Wnt signaling through ubiquitination and deubiquitination in cancers. Int. J. Mol. Sci., 2020, 21(11), 3904. doi: 10.3390/ijms21113904 PMID: 32486158
  21. Li, Y.; Reverter, D. Molecular mechanisms of DUBs regulation in signaling and disease. Int. J. Mol. Sci., 2021, 22(3), 986. doi: 10.3390/ijms22030986 PMID: 33498168
  22. Han, S.; Wang, R.; Zhang, Y.; Li, X.; Gan, Y.; Gao, F.; Rong, P.; Wang, W.; Li, W. The role of ubiquitination and deubiquitination in tumor invasion and metastasis. Int. J. Biol. Sci., 2022, 18(6), 2292-2303. doi: 10.7150/ijbs.69411 PMID: 35414786
  23. Liu, N.; Lin, M.M.; Wang, Y. The emerging roles of E3 ligases and DUBs in neurodegenerative diseases. Mol. Neurobiol., 2023, 60(1), 247-263. doi: 10.1007/s12035-022-03063-3 PMID: 36260224
  24. Hu, Y.; Li, X.; Wang, D.; Mao, X. mascRNA alleviates STING-TBK1 signaling-mediated immune response through promoting ubiquitination of STING. Mol. Immunol., 2023, 154, 45-53. doi: 10.1016/j.molimm.2022.12.012 PMID: 36603304
  25. Sun, J.; Shi, X.; Mamun, M.; Gao, Y. The role of deubiquitinating enzymes in gastric cancer (Review). Oncol. Lett., 2019, 19(1), 30-44. doi: 10.3892/ol.2019.11062 PMID: 31897112
  26. Cruz, L.; Soares, P.; Correia, M. Ubiquitin-specific proteases: Players in cancer cellular processes. Pharmaceuticals (Basel), 2021, 14(9), 848. doi: 10.3390/ph14090848 PMID: 34577547
  27. Komander, D.; Clague, M.J.; Urbé, S. Breaking the chains: Structure and function of the deubiquitinases. Nat. Rev. Mol. Cell Biol., 2009, 10(8), 550-563. doi: 10.1038/nrm2731 PMID: 19626045
  28. Chen, S.; Liu, Y.; Zhou, H. Advances in the development Ubiquitin-Specific Peptidase (USP) inhibitors. Int. J. Mol. Sci., 2021, 22(9), 4546. doi: 10.3390/ijms22094546 PMID: 33925279
  29. Huang, M.L.; Shen, G.T.; Li, N.L. Emerging potential of ubiquitin-specific proteases and ubiquitin-specific proteases inhibitors in breast cancer treatment. World J. Clin. Cases, 2022, 10(32), 11690-11701. doi: 10.12998/wjcc.v10.i32.11690 PMID: 36405275
  30. Kitamura, H. Ubiquitin-Specific Proteases (USPs) and metabolic disorders. Int. J. Mol. Sci., 2023, 24(4), 3219. doi: 10.3390/ijms24043219 PMID: 36834633
  31. Davis, M.I.; Pragani, R.; Fox, J.T.; Shen, M.; Parmar, K.; Gaudiano, E.F.; Liu, L.; Tanega, C.; McGee, L.; Hall, M.D.; McKnight, C.; Shinn, P.; Nelson, H.; Chattopadhyay, D.; D’Andrea, A.D.; Auld, D.S.; DeLucas, L.J.; Li, Z.; Boxer, M.B.; Simeonov, A. Small molecule inhibition of the Ubiquitin-specific Protease USP2 accelerates cyclin D1 degradation and leads to cell cycle arrest in colorectal cancer and mantle cell lymphoma models. J. Biol. Chem., 2016, 291(47), 24628-24640. doi: 10.1074/jbc.M116.738567 PMID: 27681596
  32. Das, S.; Chandrasekaran, A.P.; Suresh, B.; Haq, S.; Kang, J.H.; Lee, S.J.; Kim, J.; Kim, J.; Lee, S.; Kim, H.H.; Kim, K.S.; Ramakrishna, S. Genome-scale screening of deubiquitinase subfamily identifies USP3 as a stabilizer of Cdc25A regulating cell cycle in cancer. Cell Death Differ., 2020, 27(11), 3004-3020. doi: 10.1038/s41418-020-0557-5 PMID: 32415280
  33. Bonacci, T.; Emanuele, M.J. Dissenting degradation: Deubiquitinases in cell cycle and cancer. Semin. Cancer Biol., 2020, 67(Pt 2), 145-158. doi: 10.1016/j.semcancer.2020.03.008 PMID: 32201366
  34. Yan, C.; Yuan, J.; Xu, J.; Zhang, G.; Li, X.; Zhang, B.; Hu, T.; Huang, X.; Mao, Y.; Song, G. Ubiquitin-specific peptidase 39 regulates the process of proliferation and migration of human ovarian cancer via p53/p21 pathway and EMT. Med. Oncol., 2019, 36(11), 95. doi: 10.1007/s12032-019-1308-7 PMID: 31637536
  35. Wang, C.L.; Wang, J.Y.; Liu, Z.Y.; Ma, X.M.; Wang, X.W.; Jin, H.; Zhang, X.P.; Fu, D.; Hou, L.J.; Lu, Y.C. Ubiquitin-specific protease 2a stabilizes MDM4 and facilitates the p53-mediated intrinsic apoptotic pathway in glioblastoma. Carcinogenesis, 2014, 35(7), 1500-1509. doi: 10.1093/carcin/bgu015 PMID: 24445145
  36. Mungamuri, S.K.; Qiao, R.F.; Yao, S.; Manfredi, J.J.; Gu, W.; Aaronson, S.A. USP7 enforces heterochromatinization of p53 target promoters by protecting SUV39H1 from MDM2-mediated degradation. Cell Rep., 2016, 14(11), 2528-2537. doi: 10.1016/j.celrep.2016.02.049 PMID: 26971997
  37. Wang, S-A.; Wang, Y-C.; Chuang, Y-P.; Huang, Y-H.; Su, W-C.; Chang, W-C.; Hung, J-J. EGF-mediated inhibition of ubiquitin-specific peptidase 24 expression has a crucial role in tumorigenesis. Oncogene, 2017, 36(21), 2930-2945. doi: 10.1038/onc.2016.445 PMID: 27991932
  38. Weber, A.; Heinlein, M.; Dengjel, J.; Alber, C.; Singh, P.K.; Häcker, G. The deubiquitinase Usp27x stabilizes the BH 3‐only protein Bim and enhances apoptosis. EMBO Rep., 2016, 17(5), 724-738. doi: 10.15252/embr.201541392 PMID: 27013495
  39. Liang, J.R.; Martinez, A.; Lane, J.D.; Mayor, U.; Clague, M.J.; Urbé, S. USP 30 deubiquitylates mitochondrial Parkin substrates and restricts apoptotic cell death. EMBO Rep., 2015, 16(5), 618-627. doi: 10.15252/embr.201439820 PMID: 25739811
  40. Zhao, B.; Schlesiger, C.; Masucci, M.G.; Lindsten, K. The ubiquitin specific protease 4 (USP4) is a new player in the Wnt signalling pathway. J. Cell. Mol. Med., 2009, 13(8b), 1886-1895. doi: 10.1111/j.1582-4934.2008.00682.x PMID: 20141612
  41. Yang, Z.; Xian, H.; Hu, J.; Tian, S.; Qin, Y.; Wang, R.F.; Cui, J. USP18 negatively regulates NF-κB signaling by targeting TAK1 and NEMO for deubiquitination through distinct mechanisms. Sci. Rep., 2015, 5(1), 12738. doi: 10.1038/srep12738 PMID: 26240016
  42. Liu, H.; Zhang, H.; Wang, X.; Tian, Q.; Hu, Z.; Peng, C.; Jiang, P.; Wang, T.; Guo, W.; Chen, Y.; Li, X.; Zhang, P.; Pei, H. The deubiquitylating enzyme USP4 cooperates with CtIP in DNA double-strand break end resection. Cell Rep., 2015, 13(1), 93-107. doi: 10.1016/j.celrep.2015.08.056 PMID: 26387952
  43. He, J.; Zhu, Q.; Wani, G.; Sharma, N.; Han, C.; Qian, J.; Pentz, K.; Wang, Q.; Wani, A.A. Ubiquitin-specific protease 7 regulates nucleotide excision repair through deubiquitinating XPC protein and preventing XPC protein from undergoing ultraviolet light-induced and VCP/p97 protein-regulated proteolysis. J. Biol. Chem., 2014, 289(39), 27278-27289. doi: 10.1074/jbc.M114.589812 PMID: 25118285
  44. Sy, S.M.H.; Jiang, J.; O, W.S.; Deng, Y.; Huen, M.S.Y. The ubiquitin specific protease USP34 promotes ubiquitin signaling at DNA double-strand breaks. Nucleic Acids Res., 2013, 41(18), 8572-8580. doi: 10.1093/nar/gkt622 PMID: 23863847
  45. Young, M.J.; Hsu, K.C.; Lin, T.E.; Chang, W.C.; Hung, J.J. The role of ubiquitin-specific peptidases in cancer progression. J. Biomed. Sci., 2019, 26(1), 42. doi: 10.1186/s12929-019-0522-0 PMID: 31133011
  46. Chen, R.; Pang, X.; Li, L.; Zeng, Z.; Chen, M.; Zhang, S. Ubiquitin-specific proteases in inflammatory bowel disease-related signalling pathway regulation. Cell Death Dis., 2022, 13(2), 139. doi: 10.1038/s41419-022-04566-6 PMID: 35145062
  47. Xu, Q.; Liu, M.; Gu, J.; Ling, S.; Liu, X.; Luo, Z.; Jin, Y.; Chai, R.; Ou, W.; Liu, S.; Liu, N. Ubiquitin-specific protease 7 regulates myocardial ischemia/reperfusion injury by stabilizing Keap1. Cell Death Discov., 2022, 8(1), 291. doi: 10.1038/s41420-022-01086-2 PMID: 35710902
  48. Liu, X.; Balaraman, K.; Lynch, C.C.; Hebron, M.; Wolf, C.; Moussa, C. Novel ubiquitin specific protease-13 inhibitors alleviate neurodegenerative pathology. Metabolites, 2021, 11(9), 622. doi: 10.3390/metabo11090622 PMID: 34564439
  49. Benassi, B.; Flavin, R.; Marchionni, L.; Zanata, S.; Pan, Y.; Chowdhury, D.; Marani, M.; Strano, S.; Muti, P.; Blandino, G.; Loda, M. MYC is activated by USP2a-mediated modulation of microRNAs in prostate cancer. Cancer Discov., 2012, 2(3), 236-247. doi: 10.1158/2159-8290.CD-11-0219 PMID: 22585994
  50. Zhang, C.; Lu, J.; Zhang, Q.W.; Zhao, W.; Guo, J.H.; Liu, S.L.; Wu, Y.L.; Jiang, B.; Gao, F.H. USP7 promotes cell proliferation through the stabilization of Ki-67 protein in non-small cell lung cancer cells. Int. J. Biochem. Cell Biol., 2016, 79, 209-221. doi: 10.1016/j.biocel.2016.08.025 PMID: 27590858
  51. Georges, A.; Marcon, E.; Greenblatt, J.; Frappier, L. Identification and characterization of USP7 targets in cancer cells. Sci. Rep., 2018, 8(1), 15833. doi: 10.1038/s41598-018-34197-x PMID: 30367141
  52. Xu, Y.; Lu, S. Metformin inhibits esophagus cancer proliferation through upregulation of USP7. Cell. Physiol. Biochem., 2013, 32(5), 1178-1186. doi: 10.1159/000354517
  53. Liu, W-T.; Huang, K-Y.; Lu, M-C.; Huang, H-L.; Chen, C-Y.; Cheng, Y-L.; Yu, H-C.; Liu, S-Q.; Lai, N-S.; Huang, H-B. TGF-β upregulates the translation of USP15 via the PI3K/AKT pathway to promote p53 stability. Oncogene, 2017, 36(19), 2715-2723. doi: 10.1038/onc.2016.424 PMID: 27893708
  54. Zhu, J.; Luo, Z.; Pan, Y.; Zheng, W.; Li, W.; Zhang, Z.; Xiong, P.; Xu, D.; Du, M.; Wang, B.; Yu, J.; Zhang, J.; Liu, J. H19/miR‐148a/USP4 axis facilitates liver fibrosis by enhancing TGF‐β signaling in both hepatic stellate cells and hepatocytes. J. Cell. Physiol., 2019, 234(6), 9698-9710. doi: 10.1002/jcp.27656 PMID: 30362572
  55. Eichhorn, P.J.A.; Rodón, L.; Gonzàlez-Juncà, A.; Dirac, A.; Gili, M.; Martínez-Sáez, E.; Aura, C.; Barba, I.; Peg, V.; Prat, A.; Cuartas, I.; Jimenez, J.; García-Dorado, D.; Sahuquillo, J.; Bernards, R.; Baselga, J.; Seoane, J. USP15 stabilizes TGF-β receptor I and promotes oncogenesis through the activation of TGF-β signaling in glioblastoma. Nat. Med., 2012, 18(3), 429-435. doi: 10.1038/nm.2619 PMID: 22344298
  56. Deng, T.; Zhong, P.; Lou, R.; Yang, X. RNF220 promotes gastric cancer growth and stemness via modulating the USP22/wnt/β-catenin pathway. Tissue Cell, 2023, 83, 102123. doi: 10.1016/j.tice.2023.102123 PMID: 37295272
  57. Gregory, S.; Xu, Y.; Xie, P.; Fan, J.; Gao, B.; Mani, N.; Iyer, R.; Tang, A.; Wei, J.; Chaudhuri, S.M.; Wang, S.; Liu, H.; Zhang, B.; Fang, D. The ubiquitin-specific peptidase 22 is a deubiquitinase of CD73 in breast cancer cells. Am. J. Cancer Res., 2022, 12(12), 5564-5575. PMID: 36628293
  58. Bai, Z.; Du, Y.; Cong, L.; Cheng, Y. The USP22 promotes the growth of cancer cells through the DYRK1A in pancreatic ductal adenocarcinoma. Gene, 2020, 758, 144960. doi: 10.1016/j.gene.2020.144960 PMID: 32687947
  59. Kosinsky, R.L.; Helms, M.; Zerche, M.; Wohn, L.; Dyas, A.; Prokakis, E.; Kazerouni, Z.B.; Bedi, U.; Wegwitz, F.; Johnsen, S.A. USP22-dependent HSP90AB1 expression promotes resistance to HSP90 inhibition in mammary and colorectal cancer. Cell Death Dis., 2019, 10(12), 911. doi: 10.1038/s41419-019-2141-9 PMID: 31801945
  60. Kazmierczak, M.; Harris, S.L.; Kazmierczak, P.; Shah, P.; Starovoytov, V.; Ohlemiller, K.K.; Schwander, M. Progressive hearing loss in mice carrying a mutation in Usp53. J. Neurosci., 2015, 35(47), 15582-15598. doi: 10.1523/JNEUROSCI.1965-15.2015 PMID: 26609154
  61. Hariri, H.; Kose, O.; Bezdjian, A.; Daniel, S.J.; St-Arnaud, R. USP53 regulates bone homeostasis by controlling Rankl expression in osteoblasts and bone marrow adipocytes. J. Bone Miner. Res., 2020, 38(4), 578-596. doi: 10.1002/jbmr.4778 PMID: 36726200
  62. Quesada, V.; Díaz-Perales, A.; Gutiérrez-Fernández, A.; Garabaya, C.; Cal, S.; López-Otín, C. Cloning and enzymatic analysis of 22 novel human ubiquitin-specific proteases. Biochem. Biophys. Res. Commun., 2004, 314(1), 54-62. doi: 10.1016/j.bbrc.2003.12.050 PMID: 14715245
  63. Luck, K.; Kim, D.K.; Lambourne, L.; Spirohn, K.; Begg, B.E.; Bian, W.; Brignall, R.; Cafarelli, T.; Campos-Laborie, F.J.; Charloteaux, B.; Choi, D.; Coté, A.G.; Daley, M.; Deimling, S.; Desbuleux, A.; Dricot, A.; Gebbia, M.; Hardy, M.F.; Kishore, N.; Knapp, J.J.; Kovács, I.A.; Lemmens, I.; Mee, M.W.; Mellor, J.C.; Pollis, C.; Pons, C.; Richardson, A.D.; Schlabach, S.; Teeking, B.; Yadav, A.; Babor, M.; Balcha, D.; Basha, O.; Bowman-Colin, C.; Chin, S.F.; Choi, S.G.; Colabella, C.; Coppin, G.; D’Amata, C.; De Ridder, D.; De Rouck, S.; Duran-Frigola, M.; Ennajdaoui, H.; Goebels, F.; Goehring, L.; Gopal, A.; Haddad, G.; Hatchi, E.; Helmy, M.; Jacob, Y.; Kassa, Y.; Landini, S.; Li, R.; van Lieshout, N.; MacWilliams, A.; Markey, D.; Paulson, J.N.; Rangarajan, S.; Rasla, J.; Rayhan, A.; Rolland, T.; San-Miguel, A.; Shen, Y.; Sheykhkarimli, D.; Sheynkman, G.M.; Simonovsky, E.; Taşan, M.; Tejeda, A.; Tropepe, V.; Twizere, J.C.; Wang, Y.; Weatheritt, R.J.; Weile, J.; Xia, Y.; Yang, X.; Yeger-Lotem, E.; Zhong, Q.; Aloy, P.; Bader, G.D.; De Las Rivas, J.; Gaudet, S.; Hao, T.; Rak, J.; Tavernier, J.; Hill, D.E.; Vidal, M.; Roth, F.P.; Calderwood, M.A. A reference map of the human binary protein interactome. Nature, 2020, 580(7803), 402-408. doi: 10.1038/s41586-020-2188-x PMID: 32296183
  64. Yachie, N.; Petsalaki, E.; Mellor, J.C.; Weile, J.; Jacob, Y.; Verby, M.; Ozturk, S.B.; Li, S.; Cote, A.G.; Mosca, R.; Knapp, J.J.; Ko, M.; Yu, A.; Gebbia, M.; Sahni, N.; Yi, S.; Tyagi, T.; Sheykhkarimli, D.; Roth, J.F.; Wong, C.; Musa, L.; Snider, J.; Liu, Y.C.; Yu, H.; Braun, P.; Stagljar, I.; Hao, T.; Calderwood, M.A.; Pelletier, L.; Aloy, P.; Hill, D.E.; Vidal, M.; Roth, F.P. Pooled‐matrix protein interaction screens using Barcode Fusion Genetics. Mol. Syst. Biol., 2016, 12(4), 863. doi: 10.15252/msb.20156660 PMID: 27107012
  65. Hornbeck, P.V.; Zhang, B.; Murray, B.; Kornhauser, J.M.; Latham, V.; Skrzypek, E. PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. Nucleic Acids Res., 2015, 43(D1), D512-D520. doi: 10.1093/nar/gku1267 PMID: 25514926
  66. Pardo, J.V.; Sheikh, S.A.; Aslam, F.; Yasin, S.; Kanwal, A.; Naz, S.A. A USP53 p.Cys228Arg variant is associated with autosomal recessive psychosis. Authorea, 2021. doi: 10.22541/au.162670946.66965381/v1
  67. Zhao, X.; Wu, X.; Wang, H.; Yu, H.; Wang, J. USP53 promotes apoptosis and inhibits glycolysis in lung adenocarcinoma through FKBP51‐AKT1 signaling. Mol. Carcinog., 2020, 59(8), 1000-1011. doi: 10.1002/mc.23230 PMID: 32511815
  68. Maddirevula, S.; Alhebbi, H.; Alqahtani, A.; Algoufi, T.; Alsaif, H.S.; Ibrahim, N.; Abdulwahab, F.; Barr, M.; Alzaidan, H.; Almehaideb, A.; AlSasi, O.; Alhashem, A.; Hussaini, H.A.; Wali, S.; Alkuraya, F.S. Identification of novel loci for pediatric cholestatic liver disease defined by KIF12, PPM1F, USP53, LSR, and WDR83OS pathogenic variants. Genet. Med., 2019, 21(5), 1164-1172. doi: 10.1038/s41436-018-0288-x PMID: 30250217
  69. Gezdirici, A.; Kalaycik Şengül, Ö.; Doğan, M.; Özgüven, B.Y.; Akbulut, E. Biallelic novel USP53 splicing variant disrupting the gene function that causes cholestasis phenotype and review of the literature. Mol. Syndromol., 2022, 13(6), 471-484. doi: 10.1159/000523937 PMID: 36660033
  70. Alhebbi, H.; Peer-Zada, A.A.; Al-Hussaini, A.A.; Algubaisi, S.; Albassami, A.; AlMasri, N.; Alrusayni, Y.; Alruzug, I.M.; Alharby, E.; Samman, M.A.; Ayoub, S.Z.; Maddirevula, S.; Peake, R.W.A.; Alkuraya, F.S.; Wali, S.; Almontashiri, N.A.M. New paradigms of USP53 disease: Normal GGT cholestasis, BRIC, cholangiopathy, and responsiveness to rifampicin. J. Hum. Genet., 2021, 66(2), 151-159. doi: 10.1038/s10038-020-0811-1 PMID: 32759993
  71. Bull, L.N.; Ellmers, R.; Foskett, P.; Strautnieks, S.; Sambrotta, M.; Czubkowski, P.; Jankowska, I.; Wagner, B.; Deheragoda, M.; Thompson, R.J. Cholestasis due to USP53 deficiency. J. Pediatr. Gastroenterol. Nutr., 2021, 72(5), 667-673. doi: 10.1097/MPG.0000000000002926 PMID: 33075013
  72. Zhang, J.; Yang, Y.; Gong, J.Y.; Li, L.T.; Li, J.Q.; Zhang, M.H.; Lu, Y.; Xie, X.B.; Hong, Y.R.; Yu, Z.; Knisely, A.S.; Wang, J.S. Low‐GGT intrahepatic cholestasis associated with biallelic USP53 variants: Clinical, histological and ultrastructural characterization. Liver Int., 2020, 40(5), 1142-1150. doi: 10.1111/liv.14422 PMID: 32124521
  73. Vij, M.; Sankaranarayanan, S. Biallelic mutations in Ubiquitin-specific peptidase 53 (USP53) causing progressive intrahepatic cholestasis. Report of a case with review of literature. Pediatr. Dev. Pathol., 2022, 25(2), 207-212. doi: 10.1177/10935266211051175 PMID: 34809518
  74. Porta, G.; Rigo, P.S.M.; Porta, A.; Pugliese, R.P.S.; Danesi, V.L.B.; Oliveira, E.; Borges, C.C.V.; Ribeiro, C.; Miura, I.K. Progressive familial intrahepatic cholestasis associated with USP53 gene mutation in a Brazilian child. J. Pediatr. Gastroenterol. Nutr., 2021, 72(5), 674-676. doi: 10.1097/MPG.0000000000003110 PMID: 33661244
  75. Shatokhina, O.; Semenova, N.; Demina, N.; Dadali, E.; Polyakov, A.; Ryzhkova, O. A two-year clinical description of a patient with a rare type of low-GGT cholestasis caused by a novel variant of USP53. Genes (Basel), 2021, 12(10), 1618. doi: 10.3390/genes12101618 PMID: 34681012
  76. Tamura, A.; Tsukita, S. Paracellular barrier and channel functions of TJ claudins in organizing biological systems: Advances in the field of barriology revealed in knockout mice. Semin. Cell Dev. Biol., 2014, 36, 177-185. doi: 10.1016/j.semcdb.2014.09.019 PMID: 25305579
  77. Liu, Z.Y.; Song, Z.W.; Guo, S.W.; He, J.S.; Wang, S.Y.; Zhu, J.G.; Yang, H.L.; Liu, J.B. CXCL12/CXCR4 signaling contributes to neuropathic pain via central sensitization mechanisms in a rat spinal nerve ligation model. CNS Neurosci. Ther., 2019, 25(9), 922-936. doi: 10.1111/cns.13128 PMID: 30955244
  78. Tibbs, G.R.; Posson, D.J.; Goldstein, P.A. Voltage-gated ion channels in the PNS: Novel therapies for neuropathic pain? Trends Pharmacol. Sci., 2016, 37(7), 522-542. doi: 10.1016/j.tips.2016.05.002 PMID: 27233519
  79. Li, Q.; Li, R.; Chu, X.; An, X.; Chen, M.; Yu, Y.; Zhang, L.; Chen, L.; Zhu, X. Ubiquitin specific peptidase 53 promotes chronic constriction injury induced neuropathic pain through the RhoA/ROCK pathway. Acta Neurobiol. Exp. (Warsz.), 2022, 82(4), 468-476. doi: 10.55782/ane-2022-045 PMID: 36748970
  80. Bousman, C.A.; Luza, S.; Mancuso, S.G.; Kang, D.; Opazo, C.M.; Mostaid, M.S.; Cropley, V.; McGorry, P.; Shannon Weickert, C.; Pantelis, C.; Bush, A.I.; Everall, I.P. Elevated ubiquitinated proteins in brain and blood of individuals with schizophrenia. Sci. Rep., 2019, 9(1), 2307. doi: 10.1038/s41598-019-38490-1 PMID: 30783160
  81. Moustafa, A.A.; Hewedi, D.H.; Eissa, A.M.; Frydecka, D.; Misiak, B.Å. Homocysteine levels in schizophrenia and affective disorders-focus on cognition. Front. Behav. Neurosci., 2014, 8, 343. doi: 10.3389/fnbeh.2014.00343 PMID: 25339876
  82. Hariri, H.; St-Arnaud, R. Expression and role of ubiquitin-specific peptidases in osteoblasts. Int. J. Mol. Sci., 2021, 22(14), 7746. doi: 10.3390/ijms22147746 PMID: 34299363
  83. Hariri, H.; Addison, W.N.; St-Arnaud, R. Ubiquitin specific peptidase Usp53 regulates osteoblast versus adipocyte lineage commitment. Sci. Rep., 2021, 11(1), 8418. doi: 10.1038/s41598-021-87608-x PMID: 33875709
  84. Kurban, M.; Kim, C.A.; Kiuru, M.; Fantauzzo, K.; Cabral, R.; Abbas, O.; Levy, B.; Christiano, A.M. Copy number variations on chromosome 4q26-27 are associated with Cantu syndrome. Dermatology, 2011, 223(4), 316-320. doi: 10.1159/000333800 PMID: 22310962
  85. Baek, D.; Park, K.H.; Lee, K.M.; Jung, S.; Joung, S.; Kim, J.; Lee, J.W. Ubiquitin-specific protease 53 promotes osteogenic differentiation of human bone marrow-derived mesenchymal stem cells. J. Cell Deat and Dis., 2021, 12(34), 03517. doi: 10.1038/s41419-021-03517-x
  86. Leiter, A.; Veluswamy, R.R.; Wisnivesky, J.P. The global burden of lung cancer: current status and future trends. Nat. Rev. Clin. Oncol., 2023, 20(9), 624-639. doi: 10.1038/s41571-023-00798-3 PMID: 37479810
  87. Jing, Y.X. The mechanism study of USP53 regulates the migration and cisplatin resistance in lung cancer. 2022. Available From: https://kns.cnki.net/kcms2/article/abstract?v=Y_ITemen1J6ei7KzkA-2VuSnNMWxz_ypS5vnGrW7WXI4sMjm79VdChix2J_fj7KSh28ILmfOB0rMuIYIITqsPtlh0phAZ7jy5QBi4lCu_TAJHrrutopiRpS2h2Bv0_egdX71eC0_o4CzhGzxwmd-kQ==&uniplatform=NZKPT&language=CHS
  88. Yu, J.; Qin, B.; Wu, F.; Qin, S.; Nowsheen, S.; Shan, S.; Zayas, J.; Pei, H.; Lou, Z.; Wang, L. Regulation of Serine-Threonine Kinase Akt Activation by NAD + -Dependent Deacetylase SIRT7. Cell Rep., 2017, 18(5), 1229-1240. doi: 10.1016/j.celrep.2017.01.009 PMID: 28147277
  89. Chen, Y.; Liu, Z.; Wang, Y.; Zhuang, J.; Peng, Y.; Mo, X.; Chen, J.; Shi, Y.; Yu, M.; Cai, W.; Li, Y.; Zhu, X.; Yuan, W.; Li, Y.; Li, F.; Zhou, Z.; Dai, G.; Ye, X.; Wan, Y.; Jiang, Z.; Zhu, P.; Fan, X.; Wu, X. FKBP51 induces p53 dependent apoptosis and enhances drug sensitivity of human non small cell lung cancer cells. Exp. Ther. Med., 2020, 19(3), 2236-2242. doi: 10.3892/etm.2020.8450 PMID: 32104289
  90. Wang, H.; Unternaehrer, J.J. Epithelial‐mesenchymal transition and cancer stem cells: At the crossroads of differentiation and dedifferentiation. Dev. Dyn., 2019, 248(1), 10-20. doi: 10.1002/dvdy.24678 PMID: 30303578
  91. Kase, A.M.; George, D.J.; Ramalingam, S. Clear cell renal cell carcinoma: From biology to treatment. Cancers (Basel), 2023, 15(3), 665. doi: 10.3390/cancers15030665 PMID: 36765622
  92. Gui, D.; Dong, Z.; Peng, W.; Jiang, W.; Huang, G.; Liu, G.; Ye, Z.; Wang, Y.; Xu, Z.; Fu, J.; Luo, S.; Zhao, Y. Ubiquitin‐specific peptidase 53 inhibits the occurrence and development of clear cell renal cell carcinoma through NF‐κB pathway inactivation. Cancer Med., 2021, 10(11), 3674-3688. doi: 10.1002/cam4.3911 PMID: 33973730
  93. Pavitra, E.; Kancharla, J.; Gupta, V.K.; Prasad, K.; Sung, J.Y.; Kim, J.; Tej, M.B.; Choi, R.; Lee, J.H.; Han, Y.K.; Raju, G.S.R.; Bhaskar, L.V.K.S.; Huh, Y.S. The role of NF-κB in breast cancer initiation, growth, metastasis, and resistance to chemotherapy. Biomed. Pharmacother., 2023, 163, 114822. doi: 10.1016/j.biopha.2023.114822 PMID: 37146418
  94. Schubert, M.; Bauerschlag, D.O.; Muallem, M.Z.; Maass, N.; Alkatout, I. Challenges in the diagnosis and individualized treatment of cervical cancer. Medicina (Kaunas), 2023, 59(5), 925. doi: 10.3390/medicina59050925 PMID: 37241157
  95. Zhou, Q.; Yao, X.; Wu, C.; Chen, S.; Fan, D. Knockdown of Ubiquitin-Specific protease 53 Enhances the radiosensitivity of human cervical squamous cell carcinoma by regulating DNA damage-binding protein 2. Technol. Cancer Res. Treat., 2020, 19, 32508265. doi: 10.1177/1533033820929792 PMID: 32508265
  96. Kim, B.J.; Hanna, M.H. Colorectal cancer in young adults. J. Surg. Oncol., 2023, 127(8), 1247-1251. doi: 10.1002/jso.27320 PMID: 37222697
  97. Shen, W.B.; Zhi, J.J.; Jiang, H.H.; Cui, L. Expression of ubiquitin-specific protease 53 in colorectal cancer and its inhibitory effect on HCT116 cells. Zhongguo Zhongliu Shengwu Zhiliao Zazhi, 2014, 24(4), 423-428. doi: 10.3872/j.issn.1007-385X.2017.04.015
  98. Gao, Y.X.; Ning, Q.Q.; Yang, P.X.; Guan, Y.Y.; Liu, P.X.; Liu, M.L.; Qiao, L.X.; Guo, X.H.; Yang, T.W.; Chen, D.X. Recent advances in recurrent hepatocellular carcinoma therapy. World J. Hepatol., 2023, 15(4), 460-476. doi: 10.4254/wjh.v15.i4.460 PMID: 37206651
  99. Yao, Y.; Ma, W.; Guo, Y.; Liu, Y.; Xia, P.; Wu, X.; Chen, Y.; Wang, K.; Mei, C.; Wang, G.; Li, X.; Zhang, Z.; Chen, X.; Yuan, Y. USP53 plays an antitumor role in hepatocellular carcinoma through deubiquitination of cytochrome c. Oncogenesis, 2022, 11(1), 31. doi: 10.1038/s41389-022-00404-8 PMID: 35654790
  100. Sheikh, M.; Roshandel, G.; McCormack, V.; Malekzadeh, R. Current status and future prospects for esophageal cancer. Cancers (Basel), 2023, 15(3), 765. doi: 10.3390/cancers15030765 PMID: 36765722
  101. Cheng, W.; Tang, Y.; Tong, X.; Zhou, Q.; Xie, J.; Wang, J.; Han, Y.; Ta, N.; Ye, Z. USP53 activated by H3K27 acetylation regulates cell viability, apoptosis and metabolism in esophageal carcinoma via the AMPK signaling pathway. Carcinogenesis, 2022, 43(4), 349-359. doi: 10.1093/carcin/bgab123 PMID: 34919659
  102. Cameron, B.D.; Sekhar, K.R.; Ofori, M.; Freeman, M.L. The role of Nrf2 in the response to normal tissue radiation injury. Radiat. Res., 2018, 190(2), 99-109. doi: 10.1667/RR15059.1
  103. Tian, L.M. The effect of Ubiquitin-specific protease 53 on radiosensitivity of esophageal cancer Eca109 cells. 2019. Available From: https://kns.cnki.net/kcms2/article/abstract?v=Y_ITemen1J4L6DWwz5mQJDCznZBtnOl4wkbDdJK9dJx0_lMsRjHPo1FjvazIqU1T3YPUd57IwnBLDZqf9vZ_zG7B-y3t5ktnoumbnG5KxZpFZPLnyvMijV8olhUgFCmkgKhK1Yj8q-7PjQwKRMipXQ==&uniplatform=NZKPT&language=CHS

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Bentham Science Publishers, 2024