An Overview of the Deubiquitinase USP53: A Promising Diagnostic Marker and Therapeutic Target
- Авторы: Xia G.1, Guo Y.1, Zhang J.1, Han M.2, Meng X.2, Lv J.2
-
Учреждения:
- First College of Clinical Medicine,, Hebei North University
- Breast Disease Diagnosis and Treatment Center, First Hospital of Qinhuangdao
- Выпуск: Том 25, № 9 (2024)
- Страницы: 708-718
- Раздел: Life Sciences
- URL: https://permmedjournal.ru/1389-2037/article/view/645724
- DOI: https://doi.org/10.2174/0113892037292440240518194922
- ID: 645724
Цитировать
Полный текст
Аннотация
:Ubiquitination and deubiquitination are important mechanisms to maintain normal physiological activities, and their disorders or imbalances can lead to various diseases. As a subgroup of deubiquitinases (DUBs), the ubiquitin-specific peptidase (USP) family is closely related to many biological processes. USP53, one of the family members, is widely expressed in human tissues and participates in a variety of life activities, such as cell apoptosis, nerve transmission, and bone remodeling. Mutations in the USP53 gene can cause cholestasis and deafness and may also be a potential cause of schizophrenia. Knockout of USP53 can alleviate neuropathic pain induced by chronic constriction injury. Loss of USP53 up-regulates RANKL expression, promotes the cytogenesis and functional activity of osteoclasts, and triggers osteodestructive diseases. USP53 plays a tumor-suppressive role in lung cancer, renal clear cell carcinoma, colorectal cancer, liver cancer, and esophageal cancer but reduces the radiosensitivity of cervical cancer and esophageal cancer to induce radioresistance. Through the in-depth combination of literature and bioinformatics, this review suggested that USP53 may be a good potential biomarker or therapeutic target for diseases.
Ключевые слова
Об авторах
Guangce Xia
First College of Clinical Medicine,, Hebei North University
Email: info@benthamscience.net
Yulin Guo
First College of Clinical Medicine,, Hebei North University
Email: info@benthamscience.net
Jiajia Zhang
First College of Clinical Medicine,, Hebei North University
Email: info@benthamscience.net
Meng Han
Breast Disease Diagnosis and Treatment Center, First Hospital of Qinhuangdao
Автор, ответственный за переписку.
Email: info@benthamscience.net
Xiangchao Meng
Breast Disease Diagnosis and Treatment Center, First Hospital of Qinhuangdao
Автор, ответственный за переписку.
Email: info@benthamscience.net
Ji Lv
Breast Disease Diagnosis and Treatment Center, First Hospital of Qinhuangdao
Email: info@benthamscience.net
Список литературы
- Duechler, M.; Leszczyńska, G.; Sochacka, E.; Nawrot, B. Nucleoside modifications in the regulation of gene expression: focus on tRNA. Cell. Mol. Life Sci., 2016, 73(16), 3075-3095. doi: 10.1007/s00018-016-2217-y PMID: 27094388
- Chen, K.; Zhao, B.S.; He, C. Nucleic Acid Modifications in regulation of gene expression. Cell Chem. Biol., 2016, 23(1), 74-85. doi: 10.1016/j.chembiol.2015.11.007 PMID: 26933737
- Iglesias-Platas, I.; Monk, D. Nongenomic regulation of gene expression. Curr. Opin. Pediatr., 2016, 28(4), 521-528. doi: 10.1097/MOP.0000000000000365 PMID: 27139000
- Corbett, A.H. Post-transcriptional regulation of gene expression and human disease. Curr. Opin. Cell Biol., 2018, 52, 96-104. doi: 10.1016/j.ceb.2018.02.011 PMID: 29518673
- Wang, S.; Osgood, A.O.; Chatterjee, A. Uncovering post-translational modification-associated proteinprotein interactions. Curr. Opin. Struct. Biol., 2022, 74, 102352. doi: 10.1016/j.sbi.2022.102352 PMID: 35334254
- Manna, S.; Mishra, J.; Baral, T.; Kirtana, R.; Nandi, P.; Roy, A.; Chakraborty, S.; Niharika; Patra, S.K. Epigenetic signaling and crosstalk in regulation of gene expression and disease progression. Epigenomics, 2023, 15(14), 723-740. doi: 10.2217/epi-2023-0235 PMID: 37661861
- Li, W.; Li, F.; Zhang, X.; Lin, H.K.; Xu, C. Insights into the post-translational modification and its emerging role in shaping the tumor microenvironment. Signal Transduct. Target. Ther., 2021, 6(1), 422. doi: 10.1038/s41392-021-00825-8 PMID: 34924561
- Lee, J.M.; Hammarén, H.M.; Savitski, M.M.; Baek, S.H. Control of protein stability by post-translational modifications. Nat. Commun., 2023, 14(1), 201. doi: 10.1038/s41467-023-35795-8 PMID: 36639369
- Baker, H.A.; Bernardini, J.P. Its not just a phase; ubiquitination in cytosolic protein quality control. Biochem. Soc. Trans., 2021, 49(1), 365-377. doi: 10.1042/BST20200694 PMID: 33634825
- Roberts, J.Z.; Crawford, N.; Longley, D.B. The role of Ubiquitination in Apoptosis and Necroptosis. Cell Death Differ., 2022, 29(2), 272-284. doi: 10.1038/s41418-021-00922-9 PMID: 34912054
- Li, Y.; Li, S.; Wu, H. Ubiquitination-Proteasome System (UPS) and autophagy two main protein degradation machineries in response to cell stress. Cells, 2022, 11(5), 851. doi: 10.3390/cells11050851 PMID: 35269473
- Sun, T.; Liu, Z.; Yang, Q. The role of ubiquitination and deubiquitination in cancer metabolism. Mol. Cancer, 2020, 19(1), 146. doi: 10.1186/s12943-020-01262-x PMID: 33004065
- Schauer, N.J.; Magin, R.S.; Liu, X.; Doherty, L.M.; Buhrlage, S.J. Advances in Discovering Deubiquitinating Enzyme (DUB) inhibitors. J. Med. Chem., 2020, 63(6), 2731-2750. doi: 10.1021/acs.jmedchem.9b01138 PMID: 31682427
- Zhao, J.; Guo, J.; Wang, Y.; Ma, Q.; Shi, Y.; Cheng, F.; Lu, Q.; Fu, W.; Ouyang, G.; Zhang, J.; Xu, Q.; Hu, X. Research progress of DUB enzyme in hepatocellular carcinoma. Front. Oncol., 2022, 12, 920287. doi: 10.3389/fonc.2022.920287 PMID: 35875077
- Mennerich, D.; Kubaichuk, K.; Kietzmann, T. DUBs, hypoxia, and cancer. Trends Cancer, 2019, 5(10), 632-653. doi: 10.1016/j.trecan.2019.08.005 PMID: 31706510
- Miekus, K.; Kotlinowski, J.; Lichawska-Cieslar, A.; Rys, J.; Jura, J. Activity of MCPIP1 RNase in tumor associated processes. J. Exp. Clin. Cancer Res., 2019, 38(1), 421. doi: 10.1186/s13046-019-1430-6 PMID: 31639017
- Calistri, A.; Munegato, D.; Toffoletto, M.; Celestino, M.; Franchin, E.; Comin, A.; Sartori, E.; Salata, C.; Parolin, C.; Palù, G. Functional interaction between the ESCRT-I component TSG101 and the HSV-1 tegument ubiquitin specific protease. J. Cell. Physiol., 2015, 230(8), 1794-1806. doi: 10.1002/jcp.24890 PMID: 25510868
- Snyder, N.A.; Silva, G.M. Deubiquitinating enzymes (DUBs): Regulation, homeostasis, and oxidative stress response. J. Biol. Chem., 2021, 297(3), 101077. doi: 10.1016/j.jbc.2021.101077 PMID: 34391779
- Liu, J.; Cheng, Y.; Zheng, M.; Yuan, B.; Wang, Z.; Li, X.; Yin, J.; Ye, M.; Song, Y. Targeting the ubiquitination/deubiquitination process to regulate immune checkpoint pathways. Signal Transduct. Target. Ther., 2021, 6(1), 28. doi: 10.1038/s41392-020-00418-x PMID: 33479196
- Park, H.B.; Kim, J.W.; Baek, K.H. Regulation of Wnt signaling through ubiquitination and deubiquitination in cancers. Int. J. Mol. Sci., 2020, 21(11), 3904. doi: 10.3390/ijms21113904 PMID: 32486158
- Li, Y.; Reverter, D. Molecular mechanisms of DUBs regulation in signaling and disease. Int. J. Mol. Sci., 2021, 22(3), 986. doi: 10.3390/ijms22030986 PMID: 33498168
- Han, S.; Wang, R.; Zhang, Y.; Li, X.; Gan, Y.; Gao, F.; Rong, P.; Wang, W.; Li, W. The role of ubiquitination and deubiquitination in tumor invasion and metastasis. Int. J. Biol. Sci., 2022, 18(6), 2292-2303. doi: 10.7150/ijbs.69411 PMID: 35414786
- Liu, N.; Lin, M.M.; Wang, Y. The emerging roles of E3 ligases and DUBs in neurodegenerative diseases. Mol. Neurobiol., 2023, 60(1), 247-263. doi: 10.1007/s12035-022-03063-3 PMID: 36260224
- Hu, Y.; Li, X.; Wang, D.; Mao, X. mascRNA alleviates STING-TBK1 signaling-mediated immune response through promoting ubiquitination of STING. Mol. Immunol., 2023, 154, 45-53. doi: 10.1016/j.molimm.2022.12.012 PMID: 36603304
- Sun, J.; Shi, X.; Mamun, M.; Gao, Y. The role of deubiquitinating enzymes in gastric cancer (Review). Oncol. Lett., 2019, 19(1), 30-44. doi: 10.3892/ol.2019.11062 PMID: 31897112
- Cruz, L.; Soares, P.; Correia, M. Ubiquitin-specific proteases: Players in cancer cellular processes. Pharmaceuticals (Basel), 2021, 14(9), 848. doi: 10.3390/ph14090848 PMID: 34577547
- Komander, D.; Clague, M.J.; Urbé, S. Breaking the chains: Structure and function of the deubiquitinases. Nat. Rev. Mol. Cell Biol., 2009, 10(8), 550-563. doi: 10.1038/nrm2731 PMID: 19626045
- Chen, S.; Liu, Y.; Zhou, H. Advances in the development Ubiquitin-Specific Peptidase (USP) inhibitors. Int. J. Mol. Sci., 2021, 22(9), 4546. doi: 10.3390/ijms22094546 PMID: 33925279
- Huang, M.L.; Shen, G.T.; Li, N.L. Emerging potential of ubiquitin-specific proteases and ubiquitin-specific proteases inhibitors in breast cancer treatment. World J. Clin. Cases, 2022, 10(32), 11690-11701. doi: 10.12998/wjcc.v10.i32.11690 PMID: 36405275
- Kitamura, H. Ubiquitin-Specific Proteases (USPs) and metabolic disorders. Int. J. Mol. Sci., 2023, 24(4), 3219. doi: 10.3390/ijms24043219 PMID: 36834633
- Davis, M.I.; Pragani, R.; Fox, J.T.; Shen, M.; Parmar, K.; Gaudiano, E.F.; Liu, L.; Tanega, C.; McGee, L.; Hall, M.D.; McKnight, C.; Shinn, P.; Nelson, H.; Chattopadhyay, D.; DAndrea, A.D.; Auld, D.S.; DeLucas, L.J.; Li, Z.; Boxer, M.B.; Simeonov, A. Small molecule inhibition of the Ubiquitin-specific Protease USP2 accelerates cyclin D1 degradation and leads to cell cycle arrest in colorectal cancer and mantle cell lymphoma models. J. Biol. Chem., 2016, 291(47), 24628-24640. doi: 10.1074/jbc.M116.738567 PMID: 27681596
- Das, S.; Chandrasekaran, A.P.; Suresh, B.; Haq, S.; Kang, J.H.; Lee, S.J.; Kim, J.; Kim, J.; Lee, S.; Kim, H.H.; Kim, K.S.; Ramakrishna, S. Genome-scale screening of deubiquitinase subfamily identifies USP3 as a stabilizer of Cdc25A regulating cell cycle in cancer. Cell Death Differ., 2020, 27(11), 3004-3020. doi: 10.1038/s41418-020-0557-5 PMID: 32415280
- Bonacci, T.; Emanuele, M.J. Dissenting degradation: Deubiquitinases in cell cycle and cancer. Semin. Cancer Biol., 2020, 67(Pt 2), 145-158. doi: 10.1016/j.semcancer.2020.03.008 PMID: 32201366
- Yan, C.; Yuan, J.; Xu, J.; Zhang, G.; Li, X.; Zhang, B.; Hu, T.; Huang, X.; Mao, Y.; Song, G. Ubiquitin-specific peptidase 39 regulates the process of proliferation and migration of human ovarian cancer via p53/p21 pathway and EMT. Med. Oncol., 2019, 36(11), 95. doi: 10.1007/s12032-019-1308-7 PMID: 31637536
- Wang, C.L.; Wang, J.Y.; Liu, Z.Y.; Ma, X.M.; Wang, X.W.; Jin, H.; Zhang, X.P.; Fu, D.; Hou, L.J.; Lu, Y.C. Ubiquitin-specific protease 2a stabilizes MDM4 and facilitates the p53-mediated intrinsic apoptotic pathway in glioblastoma. Carcinogenesis, 2014, 35(7), 1500-1509. doi: 10.1093/carcin/bgu015 PMID: 24445145
- Mungamuri, S.K.; Qiao, R.F.; Yao, S.; Manfredi, J.J.; Gu, W.; Aaronson, S.A. USP7 enforces heterochromatinization of p53 target promoters by protecting SUV39H1 from MDM2-mediated degradation. Cell Rep., 2016, 14(11), 2528-2537. doi: 10.1016/j.celrep.2016.02.049 PMID: 26971997
- Wang, S-A.; Wang, Y-C.; Chuang, Y-P.; Huang, Y-H.; Su, W-C.; Chang, W-C.; Hung, J-J. EGF-mediated inhibition of ubiquitin-specific peptidase 24 expression has a crucial role in tumorigenesis. Oncogene, 2017, 36(21), 2930-2945. doi: 10.1038/onc.2016.445 PMID: 27991932
- Weber, A.; Heinlein, M.; Dengjel, J.; Alber, C.; Singh, P.K.; Häcker, G. The deubiquitinase Usp27x stabilizes the BH 3‐only protein Bim and enhances apoptosis. EMBO Rep., 2016, 17(5), 724-738. doi: 10.15252/embr.201541392 PMID: 27013495
- Liang, J.R.; Martinez, A.; Lane, J.D.; Mayor, U.; Clague, M.J.; Urbé, S. USP 30 deubiquitylates mitochondrial Parkin substrates and restricts apoptotic cell death. EMBO Rep., 2015, 16(5), 618-627. doi: 10.15252/embr.201439820 PMID: 25739811
- Zhao, B.; Schlesiger, C.; Masucci, M.G.; Lindsten, K. The ubiquitin specific protease 4 (USP4) is a new player in the Wnt signalling pathway. J. Cell. Mol. Med., 2009, 13(8b), 1886-1895. doi: 10.1111/j.1582-4934.2008.00682.x PMID: 20141612
- Yang, Z.; Xian, H.; Hu, J.; Tian, S.; Qin, Y.; Wang, R.F.; Cui, J. USP18 negatively regulates NF-κB signaling by targeting TAK1 and NEMO for deubiquitination through distinct mechanisms. Sci. Rep., 2015, 5(1), 12738. doi: 10.1038/srep12738 PMID: 26240016
- Liu, H.; Zhang, H.; Wang, X.; Tian, Q.; Hu, Z.; Peng, C.; Jiang, P.; Wang, T.; Guo, W.; Chen, Y.; Li, X.; Zhang, P.; Pei, H. The deubiquitylating enzyme USP4 cooperates with CtIP in DNA double-strand break end resection. Cell Rep., 2015, 13(1), 93-107. doi: 10.1016/j.celrep.2015.08.056 PMID: 26387952
- He, J.; Zhu, Q.; Wani, G.; Sharma, N.; Han, C.; Qian, J.; Pentz, K.; Wang, Q.; Wani, A.A. Ubiquitin-specific protease 7 regulates nucleotide excision repair through deubiquitinating XPC protein and preventing XPC protein from undergoing ultraviolet light-induced and VCP/p97 protein-regulated proteolysis. J. Biol. Chem., 2014, 289(39), 27278-27289. doi: 10.1074/jbc.M114.589812 PMID: 25118285
- Sy, S.M.H.; Jiang, J.; O, W.S.; Deng, Y.; Huen, M.S.Y. The ubiquitin specific protease USP34 promotes ubiquitin signaling at DNA double-strand breaks. Nucleic Acids Res., 2013, 41(18), 8572-8580. doi: 10.1093/nar/gkt622 PMID: 23863847
- Young, M.J.; Hsu, K.C.; Lin, T.E.; Chang, W.C.; Hung, J.J. The role of ubiquitin-specific peptidases in cancer progression. J. Biomed. Sci., 2019, 26(1), 42. doi: 10.1186/s12929-019-0522-0 PMID: 31133011
- Chen, R.; Pang, X.; Li, L.; Zeng, Z.; Chen, M.; Zhang, S. Ubiquitin-specific proteases in inflammatory bowel disease-related signalling pathway regulation. Cell Death Dis., 2022, 13(2), 139. doi: 10.1038/s41419-022-04566-6 PMID: 35145062
- Xu, Q.; Liu, M.; Gu, J.; Ling, S.; Liu, X.; Luo, Z.; Jin, Y.; Chai, R.; Ou, W.; Liu, S.; Liu, N. Ubiquitin-specific protease 7 regulates myocardial ischemia/reperfusion injury by stabilizing Keap1. Cell Death Discov., 2022, 8(1), 291. doi: 10.1038/s41420-022-01086-2 PMID: 35710902
- Liu, X.; Balaraman, K.; Lynch, C.C.; Hebron, M.; Wolf, C.; Moussa, C. Novel ubiquitin specific protease-13 inhibitors alleviate neurodegenerative pathology. Metabolites, 2021, 11(9), 622. doi: 10.3390/metabo11090622 PMID: 34564439
- Benassi, B.; Flavin, R.; Marchionni, L.; Zanata, S.; Pan, Y.; Chowdhury, D.; Marani, M.; Strano, S.; Muti, P.; Blandino, G.; Loda, M. MYC is activated by USP2a-mediated modulation of microRNAs in prostate cancer. Cancer Discov., 2012, 2(3), 236-247. doi: 10.1158/2159-8290.CD-11-0219 PMID: 22585994
- Zhang, C.; Lu, J.; Zhang, Q.W.; Zhao, W.; Guo, J.H.; Liu, S.L.; Wu, Y.L.; Jiang, B.; Gao, F.H. USP7 promotes cell proliferation through the stabilization of Ki-67 protein in non-small cell lung cancer cells. Int. J. Biochem. Cell Biol., 2016, 79, 209-221. doi: 10.1016/j.biocel.2016.08.025 PMID: 27590858
- Georges, A.; Marcon, E.; Greenblatt, J.; Frappier, L. Identification and characterization of USP7 targets in cancer cells. Sci. Rep., 2018, 8(1), 15833. doi: 10.1038/s41598-018-34197-x PMID: 30367141
- Xu, Y.; Lu, S. Metformin inhibits esophagus cancer proliferation through upregulation of USP7. Cell. Physiol. Biochem., 2013, 32(5), 1178-1186. doi: 10.1159/000354517
- Liu, W-T.; Huang, K-Y.; Lu, M-C.; Huang, H-L.; Chen, C-Y.; Cheng, Y-L.; Yu, H-C.; Liu, S-Q.; Lai, N-S.; Huang, H-B. TGF-β upregulates the translation of USP15 via the PI3K/AKT pathway to promote p53 stability. Oncogene, 2017, 36(19), 2715-2723. doi: 10.1038/onc.2016.424 PMID: 27893708
- Zhu, J.; Luo, Z.; Pan, Y.; Zheng, W.; Li, W.; Zhang, Z.; Xiong, P.; Xu, D.; Du, M.; Wang, B.; Yu, J.; Zhang, J.; Liu, J. H19/miR‐148a/USP4 axis facilitates liver fibrosis by enhancing TGF‐β signaling in both hepatic stellate cells and hepatocytes. J. Cell. Physiol., 2019, 234(6), 9698-9710. doi: 10.1002/jcp.27656 PMID: 30362572
- Eichhorn, P.J.A.; Rodón, L.; Gonzàlez-Juncà, A.; Dirac, A.; Gili, M.; Martínez-Sáez, E.; Aura, C.; Barba, I.; Peg, V.; Prat, A.; Cuartas, I.; Jimenez, J.; García-Dorado, D.; Sahuquillo, J.; Bernards, R.; Baselga, J.; Seoane, J. USP15 stabilizes TGF-β receptor I and promotes oncogenesis through the activation of TGF-β signaling in glioblastoma. Nat. Med., 2012, 18(3), 429-435. doi: 10.1038/nm.2619 PMID: 22344298
- Deng, T.; Zhong, P.; Lou, R.; Yang, X. RNF220 promotes gastric cancer growth and stemness via modulating the USP22/wnt/β-catenin pathway. Tissue Cell, 2023, 83, 102123. doi: 10.1016/j.tice.2023.102123 PMID: 37295272
- Gregory, S.; Xu, Y.; Xie, P.; Fan, J.; Gao, B.; Mani, N.; Iyer, R.; Tang, A.; Wei, J.; Chaudhuri, S.M.; Wang, S.; Liu, H.; Zhang, B.; Fang, D. The ubiquitin-specific peptidase 22 is a deubiquitinase of CD73 in breast cancer cells. Am. J. Cancer Res., 2022, 12(12), 5564-5575. PMID: 36628293
- Bai, Z.; Du, Y.; Cong, L.; Cheng, Y. The USP22 promotes the growth of cancer cells through the DYRK1A in pancreatic ductal adenocarcinoma. Gene, 2020, 758, 144960. doi: 10.1016/j.gene.2020.144960 PMID: 32687947
- Kosinsky, R.L.; Helms, M.; Zerche, M.; Wohn, L.; Dyas, A.; Prokakis, E.; Kazerouni, Z.B.; Bedi, U.; Wegwitz, F.; Johnsen, S.A. USP22-dependent HSP90AB1 expression promotes resistance to HSP90 inhibition in mammary and colorectal cancer. Cell Death Dis., 2019, 10(12), 911. doi: 10.1038/s41419-019-2141-9 PMID: 31801945
- Kazmierczak, M.; Harris, S.L.; Kazmierczak, P.; Shah, P.; Starovoytov, V.; Ohlemiller, K.K.; Schwander, M. Progressive hearing loss in mice carrying a mutation in Usp53. J. Neurosci., 2015, 35(47), 15582-15598. doi: 10.1523/JNEUROSCI.1965-15.2015 PMID: 26609154
- Hariri, H.; Kose, O.; Bezdjian, A.; Daniel, S.J.; St-Arnaud, R. USP53 regulates bone homeostasis by controlling Rankl expression in osteoblasts and bone marrow adipocytes. J. Bone Miner. Res., 2020, 38(4), 578-596. doi: 10.1002/jbmr.4778 PMID: 36726200
- Quesada, V.; Díaz-Perales, A.; Gutiérrez-Fernández, A.; Garabaya, C.; Cal, S.; López-Otín, C. Cloning and enzymatic analysis of 22 novel human ubiquitin-specific proteases. Biochem. Biophys. Res. Commun., 2004, 314(1), 54-62. doi: 10.1016/j.bbrc.2003.12.050 PMID: 14715245
- Luck, K.; Kim, D.K.; Lambourne, L.; Spirohn, K.; Begg, B.E.; Bian, W.; Brignall, R.; Cafarelli, T.; Campos-Laborie, F.J.; Charloteaux, B.; Choi, D.; Coté, A.G.; Daley, M.; Deimling, S.; Desbuleux, A.; Dricot, A.; Gebbia, M.; Hardy, M.F.; Kishore, N.; Knapp, J.J.; Kovács, I.A.; Lemmens, I.; Mee, M.W.; Mellor, J.C.; Pollis, C.; Pons, C.; Richardson, A.D.; Schlabach, S.; Teeking, B.; Yadav, A.; Babor, M.; Balcha, D.; Basha, O.; Bowman-Colin, C.; Chin, S.F.; Choi, S.G.; Colabella, C.; Coppin, G.; DAmata, C.; De Ridder, D.; De Rouck, S.; Duran-Frigola, M.; Ennajdaoui, H.; Goebels, F.; Goehring, L.; Gopal, A.; Haddad, G.; Hatchi, E.; Helmy, M.; Jacob, Y.; Kassa, Y.; Landini, S.; Li, R.; van Lieshout, N.; MacWilliams, A.; Markey, D.; Paulson, J.N.; Rangarajan, S.; Rasla, J.; Rayhan, A.; Rolland, T.; San-Miguel, A.; Shen, Y.; Sheykhkarimli, D.; Sheynkman, G.M.; Simonovsky, E.; Taşan, M.; Tejeda, A.; Tropepe, V.; Twizere, J.C.; Wang, Y.; Weatheritt, R.J.; Weile, J.; Xia, Y.; Yang, X.; Yeger-Lotem, E.; Zhong, Q.; Aloy, P.; Bader, G.D.; De Las Rivas, J.; Gaudet, S.; Hao, T.; Rak, J.; Tavernier, J.; Hill, D.E.; Vidal, M.; Roth, F.P.; Calderwood, M.A. A reference map of the human binary protein interactome. Nature, 2020, 580(7803), 402-408. doi: 10.1038/s41586-020-2188-x PMID: 32296183
- Yachie, N.; Petsalaki, E.; Mellor, J.C.; Weile, J.; Jacob, Y.; Verby, M.; Ozturk, S.B.; Li, S.; Cote, A.G.; Mosca, R.; Knapp, J.J.; Ko, M.; Yu, A.; Gebbia, M.; Sahni, N.; Yi, S.; Tyagi, T.; Sheykhkarimli, D.; Roth, J.F.; Wong, C.; Musa, L.; Snider, J.; Liu, Y.C.; Yu, H.; Braun, P.; Stagljar, I.; Hao, T.; Calderwood, M.A.; Pelletier, L.; Aloy, P.; Hill, D.E.; Vidal, M.; Roth, F.P. Pooled‐matrix protein interaction screens using Barcode Fusion Genetics. Mol. Syst. Biol., 2016, 12(4), 863. doi: 10.15252/msb.20156660 PMID: 27107012
- Hornbeck, P.V.; Zhang, B.; Murray, B.; Kornhauser, J.M.; Latham, V.; Skrzypek, E. PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. Nucleic Acids Res., 2015, 43(D1), D512-D520. doi: 10.1093/nar/gku1267 PMID: 25514926
- Pardo, J.V.; Sheikh, S.A.; Aslam, F.; Yasin, S.; Kanwal, A.; Naz, S.A. A USP53 p.Cys228Arg variant is associated with autosomal recessive psychosis. Authorea, 2021. doi: 10.22541/au.162670946.66965381/v1
- Zhao, X.; Wu, X.; Wang, H.; Yu, H.; Wang, J. USP53 promotes apoptosis and inhibits glycolysis in lung adenocarcinoma through FKBP51‐AKT1 signaling. Mol. Carcinog., 2020, 59(8), 1000-1011. doi: 10.1002/mc.23230 PMID: 32511815
- Maddirevula, S.; Alhebbi, H.; Alqahtani, A.; Algoufi, T.; Alsaif, H.S.; Ibrahim, N.; Abdulwahab, F.; Barr, M.; Alzaidan, H.; Almehaideb, A.; AlSasi, O.; Alhashem, A.; Hussaini, H.A.; Wali, S.; Alkuraya, F.S. Identification of novel loci for pediatric cholestatic liver disease defined by KIF12, PPM1F, USP53, LSR, and WDR83OS pathogenic variants. Genet. Med., 2019, 21(5), 1164-1172. doi: 10.1038/s41436-018-0288-x PMID: 30250217
- Gezdirici, A.; Kalaycik Şengül, Ö.; Doğan, M.; Özgüven, B.Y.; Akbulut, E. Biallelic novel USP53 splicing variant disrupting the gene function that causes cholestasis phenotype and review of the literature. Mol. Syndromol., 2022, 13(6), 471-484. doi: 10.1159/000523937 PMID: 36660033
- Alhebbi, H.; Peer-Zada, A.A.; Al-Hussaini, A.A.; Algubaisi, S.; Albassami, A.; AlMasri, N.; Alrusayni, Y.; Alruzug, I.M.; Alharby, E.; Samman, M.A.; Ayoub, S.Z.; Maddirevula, S.; Peake, R.W.A.; Alkuraya, F.S.; Wali, S.; Almontashiri, N.A.M. New paradigms of USP53 disease: Normal GGT cholestasis, BRIC, cholangiopathy, and responsiveness to rifampicin. J. Hum. Genet., 2021, 66(2), 151-159. doi: 10.1038/s10038-020-0811-1 PMID: 32759993
- Bull, L.N.; Ellmers, R.; Foskett, P.; Strautnieks, S.; Sambrotta, M.; Czubkowski, P.; Jankowska, I.; Wagner, B.; Deheragoda, M.; Thompson, R.J. Cholestasis due to USP53 deficiency. J. Pediatr. Gastroenterol. Nutr., 2021, 72(5), 667-673. doi: 10.1097/MPG.0000000000002926 PMID: 33075013
- Zhang, J.; Yang, Y.; Gong, J.Y.; Li, L.T.; Li, J.Q.; Zhang, M.H.; Lu, Y.; Xie, X.B.; Hong, Y.R.; Yu, Z.; Knisely, A.S.; Wang, J.S. Low‐GGT intrahepatic cholestasis associated with biallelic USP53 variants: Clinical, histological and ultrastructural characterization. Liver Int., 2020, 40(5), 1142-1150. doi: 10.1111/liv.14422 PMID: 32124521
- Vij, M.; Sankaranarayanan, S. Biallelic mutations in Ubiquitin-specific peptidase 53 (USP53) causing progressive intrahepatic cholestasis. Report of a case with review of literature. Pediatr. Dev. Pathol., 2022, 25(2), 207-212. doi: 10.1177/10935266211051175 PMID: 34809518
- Porta, G.; Rigo, P.S.M.; Porta, A.; Pugliese, R.P.S.; Danesi, V.L.B.; Oliveira, E.; Borges, C.C.V.; Ribeiro, C.; Miura, I.K. Progressive familial intrahepatic cholestasis associated with USP53 gene mutation in a Brazilian child. J. Pediatr. Gastroenterol. Nutr., 2021, 72(5), 674-676. doi: 10.1097/MPG.0000000000003110 PMID: 33661244
- Shatokhina, O.; Semenova, N.; Demina, N.; Dadali, E.; Polyakov, A.; Ryzhkova, O. A two-year clinical description of a patient with a rare type of low-GGT cholestasis caused by a novel variant of USP53. Genes (Basel), 2021, 12(10), 1618. doi: 10.3390/genes12101618 PMID: 34681012
- Tamura, A.; Tsukita, S. Paracellular barrier and channel functions of TJ claudins in organizing biological systems: Advances in the field of barriology revealed in knockout mice. Semin. Cell Dev. Biol., 2014, 36, 177-185. doi: 10.1016/j.semcdb.2014.09.019 PMID: 25305579
- Liu, Z.Y.; Song, Z.W.; Guo, S.W.; He, J.S.; Wang, S.Y.; Zhu, J.G.; Yang, H.L.; Liu, J.B. CXCL12/CXCR4 signaling contributes to neuropathic pain via central sensitization mechanisms in a rat spinal nerve ligation model. CNS Neurosci. Ther., 2019, 25(9), 922-936. doi: 10.1111/cns.13128 PMID: 30955244
- Tibbs, G.R.; Posson, D.J.; Goldstein, P.A. Voltage-gated ion channels in the PNS: Novel therapies for neuropathic pain? Trends Pharmacol. Sci., 2016, 37(7), 522-542. doi: 10.1016/j.tips.2016.05.002 PMID: 27233519
- Li, Q.; Li, R.; Chu, X.; An, X.; Chen, M.; Yu, Y.; Zhang, L.; Chen, L.; Zhu, X. Ubiquitin specific peptidase 53 promotes chronic constriction injury induced neuropathic pain through the RhoA/ROCK pathway. Acta Neurobiol. Exp. (Warsz.), 2022, 82(4), 468-476. doi: 10.55782/ane-2022-045 PMID: 36748970
- Bousman, C.A.; Luza, S.; Mancuso, S.G.; Kang, D.; Opazo, C.M.; Mostaid, M.S.; Cropley, V.; McGorry, P.; Shannon Weickert, C.; Pantelis, C.; Bush, A.I.; Everall, I.P. Elevated ubiquitinated proteins in brain and blood of individuals with schizophrenia. Sci. Rep., 2019, 9(1), 2307. doi: 10.1038/s41598-019-38490-1 PMID: 30783160
- Moustafa, A.A.; Hewedi, D.H.; Eissa, A.M.; Frydecka, D.; Misiak, B.Å. Homocysteine levels in schizophrenia and affective disorders-focus on cognition. Front. Behav. Neurosci., 2014, 8, 343. doi: 10.3389/fnbeh.2014.00343 PMID: 25339876
- Hariri, H.; St-Arnaud, R. Expression and role of ubiquitin-specific peptidases in osteoblasts. Int. J. Mol. Sci., 2021, 22(14), 7746. doi: 10.3390/ijms22147746 PMID: 34299363
- Hariri, H.; Addison, W.N.; St-Arnaud, R. Ubiquitin specific peptidase Usp53 regulates osteoblast versus adipocyte lineage commitment. Sci. Rep., 2021, 11(1), 8418. doi: 10.1038/s41598-021-87608-x PMID: 33875709
- Kurban, M.; Kim, C.A.; Kiuru, M.; Fantauzzo, K.; Cabral, R.; Abbas, O.; Levy, B.; Christiano, A.M. Copy number variations on chromosome 4q26-27 are associated with Cantu syndrome. Dermatology, 2011, 223(4), 316-320. doi: 10.1159/000333800 PMID: 22310962
- Baek, D.; Park, K.H.; Lee, K.M.; Jung, S.; Joung, S.; Kim, J.; Lee, J.W. Ubiquitin-specific protease 53 promotes osteogenic differentiation of human bone marrow-derived mesenchymal stem cells. J. Cell Deat and Dis., 2021, 12(34), 03517. doi: 10.1038/s41419-021-03517-x
- Leiter, A.; Veluswamy, R.R.; Wisnivesky, J.P. The global burden of lung cancer: current status and future trends. Nat. Rev. Clin. Oncol., 2023, 20(9), 624-639. doi: 10.1038/s41571-023-00798-3 PMID: 37479810
- Jing, Y.X. The mechanism study of USP53 regulates the migration and cisplatin resistance in lung cancer. 2022. Available From: https://kns.cnki.net/kcms2/article/abstract?v=Y_ITemen1J6ei7KzkA-2VuSnNMWxz_ypS5vnGrW7WXI4sMjm79VdChix2J_fj7KSh28ILmfOB0rMuIYIITqsPtlh0phAZ7jy5QBi4lCu_TAJHrrutopiRpS2h2Bv0_egdX71eC0_o4CzhGzxwmd-kQ==&uniplatform=NZKPT&language=CHS
- Yu, J.; Qin, B.; Wu, F.; Qin, S.; Nowsheen, S.; Shan, S.; Zayas, J.; Pei, H.; Lou, Z.; Wang, L. Regulation of Serine-Threonine Kinase Akt Activation by NAD + -Dependent Deacetylase SIRT7. Cell Rep., 2017, 18(5), 1229-1240. doi: 10.1016/j.celrep.2017.01.009 PMID: 28147277
- Chen, Y.; Liu, Z.; Wang, Y.; Zhuang, J.; Peng, Y.; Mo, X.; Chen, J.; Shi, Y.; Yu, M.; Cai, W.; Li, Y.; Zhu, X.; Yuan, W.; Li, Y.; Li, F.; Zhou, Z.; Dai, G.; Ye, X.; Wan, Y.; Jiang, Z.; Zhu, P.; Fan, X.; Wu, X. FKBP51 induces p53 dependent apoptosis and enhances drug sensitivity of human non small cell lung cancer cells. Exp. Ther. Med., 2020, 19(3), 2236-2242. doi: 10.3892/etm.2020.8450 PMID: 32104289
- Wang, H.; Unternaehrer, J.J. Epithelial‐mesenchymal transition and cancer stem cells: At the crossroads of differentiation and dedifferentiation. Dev. Dyn., 2019, 248(1), 10-20. doi: 10.1002/dvdy.24678 PMID: 30303578
- Kase, A.M.; George, D.J.; Ramalingam, S. Clear cell renal cell carcinoma: From biology to treatment. Cancers (Basel), 2023, 15(3), 665. doi: 10.3390/cancers15030665 PMID: 36765622
- Gui, D.; Dong, Z.; Peng, W.; Jiang, W.; Huang, G.; Liu, G.; Ye, Z.; Wang, Y.; Xu, Z.; Fu, J.; Luo, S.; Zhao, Y. Ubiquitin‐specific peptidase 53 inhibits the occurrence and development of clear cell renal cell carcinoma through NF‐κB pathway inactivation. Cancer Med., 2021, 10(11), 3674-3688. doi: 10.1002/cam4.3911 PMID: 33973730
- Pavitra, E.; Kancharla, J.; Gupta, V.K.; Prasad, K.; Sung, J.Y.; Kim, J.; Tej, M.B.; Choi, R.; Lee, J.H.; Han, Y.K.; Raju, G.S.R.; Bhaskar, L.V.K.S.; Huh, Y.S. The role of NF-κB in breast cancer initiation, growth, metastasis, and resistance to chemotherapy. Biomed. Pharmacother., 2023, 163, 114822. doi: 10.1016/j.biopha.2023.114822 PMID: 37146418
- Schubert, M.; Bauerschlag, D.O.; Muallem, M.Z.; Maass, N.; Alkatout, I. Challenges in the diagnosis and individualized treatment of cervical cancer. Medicina (Kaunas), 2023, 59(5), 925. doi: 10.3390/medicina59050925 PMID: 37241157
- Zhou, Q.; Yao, X.; Wu, C.; Chen, S.; Fan, D. Knockdown of Ubiquitin-Specific protease 53 Enhances the radiosensitivity of human cervical squamous cell carcinoma by regulating DNA damage-binding protein 2. Technol. Cancer Res. Treat., 2020, 19, 32508265. doi: 10.1177/1533033820929792 PMID: 32508265
- Kim, B.J.; Hanna, M.H. Colorectal cancer in young adults. J. Surg. Oncol., 2023, 127(8), 1247-1251. doi: 10.1002/jso.27320 PMID: 37222697
- Shen, W.B.; Zhi, J.J.; Jiang, H.H.; Cui, L. Expression of ubiquitin-specific protease 53 in colorectal cancer and its inhibitory effect on HCT116 cells. Zhongguo Zhongliu Shengwu Zhiliao Zazhi, 2014, 24(4), 423-428. doi: 10.3872/j.issn.1007-385X.2017.04.015
- Gao, Y.X.; Ning, Q.Q.; Yang, P.X.; Guan, Y.Y.; Liu, P.X.; Liu, M.L.; Qiao, L.X.; Guo, X.H.; Yang, T.W.; Chen, D.X. Recent advances in recurrent hepatocellular carcinoma therapy. World J. Hepatol., 2023, 15(4), 460-476. doi: 10.4254/wjh.v15.i4.460 PMID: 37206651
- Yao, Y.; Ma, W.; Guo, Y.; Liu, Y.; Xia, P.; Wu, X.; Chen, Y.; Wang, K.; Mei, C.; Wang, G.; Li, X.; Zhang, Z.; Chen, X.; Yuan, Y. USP53 plays an antitumor role in hepatocellular carcinoma through deubiquitination of cytochrome c. Oncogenesis, 2022, 11(1), 31. doi: 10.1038/s41389-022-00404-8 PMID: 35654790
- Sheikh, M.; Roshandel, G.; McCormack, V.; Malekzadeh, R. Current status and future prospects for esophageal cancer. Cancers (Basel), 2023, 15(3), 765. doi: 10.3390/cancers15030765 PMID: 36765722
- Cheng, W.; Tang, Y.; Tong, X.; Zhou, Q.; Xie, J.; Wang, J.; Han, Y.; Ta, N.; Ye, Z. USP53 activated by H3K27 acetylation regulates cell viability, apoptosis and metabolism in esophageal carcinoma via the AMPK signaling pathway. Carcinogenesis, 2022, 43(4), 349-359. doi: 10.1093/carcin/bgab123 PMID: 34919659
- Cameron, B.D.; Sekhar, K.R.; Ofori, M.; Freeman, M.L. The role of Nrf2 in the response to normal tissue radiation injury. Radiat. Res., 2018, 190(2), 99-109. doi: 10.1667/RR15059.1
- Tian, L.M. The effect of Ubiquitin-specific protease 53 on radiosensitivity of esophageal cancer Eca109 cells. 2019. Available From: https://kns.cnki.net/kcms2/article/abstract?v=Y_ITemen1J4L6DWwz5mQJDCznZBtnOl4wkbDdJK9dJx0_lMsRjHPo1FjvazIqU1T3YPUd57IwnBLDZqf9vZ_zG7B-y3t5ktnoumbnG5KxZpFZPLnyvMijV8olhUgFCmkgKhK1Yj8q-7PjQwKRMipXQ==&uniplatform=NZKPT&language=CHS
Дополнительные файлы
