PLASTAMINATION: Outcomes on the Central Nervous System and Reproduction


Цитировать

Полный текст

Аннотация

Background:Environmental exposures to non-biodegradable and biodegradable plastics are unavoidable. Microplastics (MPs) and nanoplastics (NPs) from the manufacturing of plastics (primary sources) and the degradation of plastic waste (secondary sources) can enter the food chain directly or indirectly and, passing biological barriers, could target both the brain and the gonads. Hence, the worldwide diffusion of environmental plastic contamination (PLASTAMINATION) in daily life may represent a possible and potentially serious risk to human health.

Objective:This review provides an overview of the effects of non-biodegradable and the more recently introduced biodegradable MPs and NPs on the brain and brain-dependent reproductive functions, summarizing the molecular mechanisms and outcomes on nervous and reproductive organs. Data from in vitro, ex vivo, non-mammalian and mammalian animal models and epidemiological studies have been reviewed and discussed.

Results:MPs and NPs from non-biodegradable plastics affect organs, tissues and cells from sensitive systems such as the brain and reproductive organs. Both MPs and NPs induce oxidative stress, chronic inflammation, energy metabolism disorders, mitochondrial dysfunction and cytotoxicity, which in turn are responsible for neuroinflammation, dysregulation of synaptic functions, metabolic dysbiosis, poor gamete quality, and neuronal and reproductive toxicity. In spite of this mechanistic knowledge gained from studies of non-biodegradable plastics, relatively little is known about the adverse effects or molecular mechanisms of MPs and NPs from biodegradable plastics.

Conclusion:The neurological and reproductive health risks of MPs/NPs exposure warrant serious consideration, and further studies on biodegradable plastics are recommended.

Об авторах

Antonietta Santoro

Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana",, University of Salerno

Email: info@benthamscience.net

Marianna Marino

Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana",, University of Salerno

Email: info@benthamscience.net

Laura Vandenberg

Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts Amherst

Email: info@benthamscience.net

Marta Szychlinska

Faculty of Medicine and Surgery, Kore University of Enna, Cittadella Universitaria

Email: info@benthamscience.net

Erwin Lamparelli

Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno

Email: info@benthamscience.net

Federica Scalia

, Euro-Mediterranean Institute of Science and Technology (IEMEST)

Email: info@benthamscience.net

Natalia Rocca

Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana",, University of Salerno

Email: info@benthamscience.net

Raffaella D’Auria

Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana",, University of Salerno

Email: info@benthamscience.net

Grazia Giovanna Pastorino

Child and Adolescence Neuropsychiatry Unit, Department of Medicine, Surgery and Dentistry,, University of 84100 Salerno

Email: info@benthamscience.net

Giovanna Porta

Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana",, University of Salerno

Email: info@benthamscience.net

Francesca Operto

Department of Science of Health School of Medicine, University Magna Graecia

Email: info@benthamscience.net

Andrea Viggiano

Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana",, University of Salerno

Email: info@benthamscience.net

Francesco Cappello

, Euro-Mediterranean Institute of Science and Technology (IEMEST)

Email: info@benthamscience.net

Rosaria Meccariello

Department of Movement and Wellness Sciences, Parthenope University of Naples

Автор, ответственный за переписку.
Email: info@benthamscience.net

Список литературы

  1. Jiang, B.; Kauffman, A.E.; Li, L.; McFee, W.; Cai, B.; Weinstein, J.; Lead, J.R.; Chatterjee, S.; Scott, G.I.; Xiao, S. Health impacts of environmental contamination of micro- and nanoplastics: A review. Environ. Health Prev. Med., 2020, 25(1), 29. doi: 10.1186/s12199-020-00870-9 PMID: 32664857
  2. Schmid, C.; Cozzarini, L.; Zambello, E. Microplastic’s story. Mar. Pollut. Bull., 2021, 162, 111820. doi: 10.1016/j.marpolbul.2020.111820 PMID: 33203604
  3. Bajt, O. From plastics to microplastics and organisms. FEBS Open Bio, 2021, 11(4), 954-966. doi: 10.1002/2211-5463.13120 PMID: 33595903
  4. Jin, M.; Wang, X.; Ren, T.; Wang, J.; Shan, J. Microplastics contamination in food and beverages: Direct exposure to humans. J. Food Sci., 2021, 86(7), 2816-2837. doi: 10.1111/1750-3841.15802 PMID: 34146409
  5. Blackburn, K.; Green, D. The potential effects of microplastics on human health: What is known and what is unknown. Ambio, 2022, 51(3), 518-530. doi: 10.1007/s13280-021-01589-9 PMID: 34185251
  6. D’Angelo, S.; Meccariello, R. Microplastics: A threat for male fertility. Int. J. Environ. Res. Public Health, 2021, 18(5), 2392. doi: 10.3390/ijerph18052392 PMID: 33804513
  7. Zhang, Q.; He, Y.; Cheng, R.; Li, Q.; Qian, Z.; Lin, X. Recent advances in toxicological research and potential health impact of microplastics and nanoplastics in vivo. Environ. Sci. Pollut. Res. Int., 2022, 29(27), 40415-40448. doi: 10.1007/s11356-022-19745-3 PMID: 35347608
  8. Maradonna, F.; Meccariello, R. EDCs: Focus on reproductive alterations in mammalian and nonmammalian models. In: Environmental Contaminants and Endocrine Health; Elsevier, 2023; pp. 89-108. doi: 10.1016/B978-0-12-824464-7.00003-9
  9. Ullah, S.; Ahmad, S.; Guo, X.; Ullah, S.; Ullah, S.; Nabi, G.; Wanghe, K. A review of the endocrine disrupting effects of micro and nano plastic and their associated chemicals in mammals. Front. Endocrinol., 2023, 13, 1084236. doi: 10.3389/fendo.2022.1084236 PMID: 36726457
  10. Viršek, M.K.; Lovšin, M.N.; Koren, Š.; Kržan, A.; Peterlin, M. Microplastics as a vector for the transport of the bacterial fish pathogen species Aeromonas salmonicida. Mar. Pollut. Bull., 2017, 125(1-2), 301-309. doi: 10.1016/j.marpolbul.2017.08.024 PMID: 28889914
  11. Ma, C.; Chen, Q.; Li, J.; Li, B.; Liang, W.; Su, L.; Shi, H. Distribution and translocation of micro- and nanoplastics in fish. Crit. Rev. Toxicol., 2021, 51(9), 740-753. doi: 10.1080/10408444.2021.2024495 PMID: 35166176
  12. Wang, W.; Ge, J.; Yu, X. Bioavailability and toxicity of microplastics to fish species: A review. Ecotoxicol. Environ. Saf., 2020, 189, 109913. doi: 10.1016/j.ecoenv.2019.109913 PMID: 31735369
  13. Xu, S.; Ma, J.; Ji, R.; Pan, K.; Miao, A.J. Microplastics in aquatic environments: Occurrence, accumulation, and biological effects. Sci. Total Environ., 2020, 703, 134699. doi: 10.1016/j.scitotenv.2019.134699 PMID: 31726297
  14. Deidda, I.; Russo, R.; Bonaventura, R.; Costa, C.; Zito, F.; Lampiasi, N. Neurotoxicity in marine invertebrates: An update. Biology, 2021, 10(2), 161. doi: 10.3390/biology10020161 PMID: 33670451
  15. Yong, C.; Valiyaveettil, S.; Tang, B. Toxicity of microplastics and nanoplastics in mammalian systems. Int. J. Environ. Res. Public Health, 2020, 17(5), 1509. doi: 10.3390/ijerph17051509 PMID: 32111046
  16. Bhagat, J.; Zang, L.; Nishimura, N.; Shimada, Y. Zebrafish: An emerging model to study microplastic and nanoplastic toxicity. Sci. Total Environ., 2020, 728, 138707. doi: 10.1016/j.scitotenv.2020.138707 PMID: 32361115
  17. Windheim, J.; Colombo, L.; Battajni, N.C.; Russo, L.; Cagnotto, A.; Diomede, L.; Bigini, P.; Vismara, E.; Fiumara, F.; Gabbrielli, S.; Gautieri, A.; Mazzuoli-Weber, G.; Salmona, M.; Colnaghi, L. Micro- and nanoplastics’ effects on protein folding and amyloidosis. Int. J. Mol. Sci., 2022, 23(18), 10329. doi: 10.3390/ijms231810329 PMID: 36142234
  18. Ragusa, A.; Svelato, A.; Santacroce, C.; Catalano, P.; Notarstefano, V.; Carnevali, O.; Papa, F.; Rongioletti, M.C.A.; Baiocco, F.; Draghi, S.; D’Amore, E.; Rinaldo, D.; Matta, M.; Giorgini, E. Plasticenta: First evidence of microplastics in human placenta. Environ. Int., 2021, 146, 106274. doi: 10.1016/j.envint.2020.106274 PMID: 33395930
  19. Zhao, Q.; Zhu, L.; Weng, J.; Jin, Z.; Cao, Y.; Jiang, H.; Zhang, Z. Detection and characterization of microplastics in the human testis and semen. Sci. Total Environ., 2023, 877, 162713. doi: 10.1016/j.scitotenv.2023.162713 PMID: 36948312
  20. Chianese, R.; Coccurello, R.; Viggiano, A.; Scafuro, M.; Fiore, M.; Coppola, G.; Operto, F.F.; Fasano, S.; Laye, S.; Pierantoni, R.; Meccariello, R. Impact of dietary fats on brain functions. Curr. Neuropharmacol., 2018, 16(7), 1059-1085. doi: 10.2174/1570159X15666171017102547 PMID: 29046155
  21. Cryan, J.F.; O’Riordan, K.J.; Cowan, C.S.M.; Sandhu, K.V.; Bastiaanssen, T.F.S.; Boehme, M.; Codagnone, M.G.; Cussotto, S.; Fulling, C.; Golubeva, A.V.; Guzzetta, K.E.; Jaggar, M.; Long-Smith, C.M.; Lyte, J.M.; Martin, J.A.; Molinero-Perez, A.; Moloney, G.; Morelli, E.; Morillas, E.; O’Connor, R.; Cruz-Pereira, J.S.; Peterson, V.L.; Rea, K.; Ritz, N.L.; Sherwin, E.; Spichak, S.; Teichman, E.M.; van de Wouw, M.; Ventura-Silva, A.P.; Wallace-Fitzsimons, S.E.; Hyland, N.; Clarke, G.; Dinan, T.G. The microbiota-gut-brain axis. Physiol. Rev., 2019, 99(4), 1877-2013. doi: 10.1152/physrev.00018.2018 PMID: 31460832
  22. DiSabato, D.J.; Quan, N.; Godbout, J.P. Neuroinflammation: The devil is in the details. J. Neurochem., 2016, 139(S2)(Suppl. 2), 136-153. doi: 10.1111/jnc.13607 PMID: 26990767
  23. Kwon, H.S.; Koh, S.H. Neuroinflammation in neurodegenerative disorders: The roles of microglia and astrocytes. Transl. Neurodegener., 2020, 9(1), 42. doi: 10.1186/s40035-020-00221-2 PMID: 33239064
  24. Meccariello, R.; Marino, M.; Mele, E.; Pastorino, G.M.G.; Operto, F.F.; Santoro, A.; Viggiano, A. Neuroinflammation: Molecular mechanisms and therapeutic perspectives. Cent. Nerv. Syst. Agents Med. Chem., 2022, 22(3), 160-174. doi: 10.2174/1871524922666220929153215 PMID: 36177627
  25. Fried, J.R. Polymer science and technology, 3rd ed; Prentice Hall: Upper Saddle River, NJ, 2014.
  26. Rujnić-Sokele, M.; Pilipović, A. Challenges and opportunities of biodegradable plastics: A mini review. Waste Manag. Res., 2017, 35(2), 132-140. doi: 10.1177/0734242X16683272 PMID: 28064843
  27. Krueger, M.C.; Harms, H.; Schlosser, D. Prospects for microbiological solutions to environmental pollution with plastics. Appl. Microbiol. Biotechnol., 2015, 99(21), 8857-8874. doi: 10.1007/s00253-015-6879-4 PMID: 26318446
  28. Rahman, M.H.; Bhoi, P.R. An overview of non-biodegradable bioplastics. J. Clean. Prod., 2021, 294, 126218. doi: 10.1016/j.jclepro.2021.126218
  29. Lee, W.T.; van Muyden, A.; Bobbink, F.D.; Mensi, M.D.; Carullo, J.R.; Dyson, P.J. Mechanistic classification and benchmarking of polyolefin depolymerization over silica-alumina-based catalysts. Nat. Commun., 2022, 13(1), 4850. doi: 10.1038/s41467-022-32563-y PMID: 35977921
  30. Elgharbawy, A.S.; Ali, R.M. A comprehensive review of the polyolefin composites and their properties. Heliyon, 2022, 8(7), e09932. doi: 10.1016/j.heliyon.2022.e09932 PMID: 35859640
  31. Hees, T.; Zhong, F.; Stürzel, M.; Mülhaupt, R. Tailoring hydrocarbon polymers and all‐hydrocarbon composites for circular economy. Macromol. Rapid Commun., 2019, 40(1), 1800608. doi: 10.1002/marc.201800608 PMID: 30417498
  32. ChemicalBook , Available from: https://www.chemicalbook.com/
  33. Yao, Z.; Seong, H.J.; Jang, Y.S. Environmental toxicity and decomposition of polyethylene. Ecotoxicol. Environ. Saf., 2022, 242, 113933. doi: 10.1016/j.ecoenv.2022.113933 PMID: 35930840
  34. Paxton, N.C.; Allenby, M.C.; Lewis, P.M.; Woodruff, M.A. Biomedical applications of polyethylene. Eur. Polym. J., 2019, 118, 412-428. doi: 10.1016/j.eurpolymj.2019.05.037
  35. Kumar, L.; Saha, A. Khushbu, ; Warkar, S. G. Chapter 11 - Biodegradability of automotive plastics and composites. In: Biodegradability of Conventional Plastics; Sarkar, A., Sharma, B., Shekhar, S., Eds.: Elsevier, 2023; p. 221-242.
  36. Rani, M. Meenu; Shanker, U. The role of nanomaterials in plastics biodegradability.Biodegradability of Conventional Plastics; Elsevier, 2023, pp. 283-308. doi: 10.1016/B978-0-323-89858-4.00012-9
  37. Li, X.; Meng, L.; Zhang, Y.; Qin, Z.; Meng, L.; Li, C.; Liu, M. Research and application of polypropylene carbonate composite materials: A review. Polymers, 2022, 14(11), 2159. doi: 10.3390/polym14112159 PMID: 35683832
  38. Blackley, D.C. Plasticised polyvinyl chloride (PVC). In: Synthetic Rubbers: Their Chemistry and Technology; Springer Netherlands: Dordrecht, 1983; pp. 244-269. doi: 10.1007/978-94-009-6619-2_8
  39. Yu, J.; Sun, L.; Ma, C.; Qiao, Y.; Yao, H. Thermal degradation of PVC: A review. Waste Manag., 2016, 48, 300-314. doi: 10.1016/j.wasman.2015.11.041 PMID: 26687228
  40. Peng, B.Y.; Chen, Z.; Chen, J.; Yu, H.; Zhou, X.; Criddle, C.S.; Wu, W.M.; Zhang, Y. Biodegradation of polyvinyl chloride (PVC) in tenebrio molitor (Coleoptera: Tenebrionidae) larvae. Environ. Int., 2020, 145, 106106. doi: 10.1016/j.envint.2020.106106 PMID: 32947161
  41. Lewandowski, K.; Skórczewska, K. A brief review of poly(vinyl chloride) (PVC) recycling. Polymers, 2022, 14(15), 3035. doi: 10.3390/polym14153035 PMID: 35893999
  42. Zhang, Y.; Pedersen, J.N.; Eser, B.E.; Guo, Z. Biodegradation of polyethylene and polystyrene: From microbial deterioration to enzyme discovery. Biotechnol. Adv., 2022, 60, 107991. doi: 10.1016/j.biotechadv.2022.107991 PMID: 35654281
  43. Kik, K.; Bukowska, B.; Sicińska, P. Polystyrene nanoparticles: Sources, occurrence in the environment, distribution in tissues, accumulation and toxicity to various organisms. Environ. Pollut., 2020, 262, 114297. doi: 10.1016/j.envpol.2020.114297 PMID: 32155552
  44. Pulido, B.A.; Habboub, O.S.; Aristizabal, S.L.; Szekely, G.; Nunes, S.P. Recycled poly(ethylene terephthalate) for high temperature solvent resistant membranes. ACS Appl. Polym. Mater., 2019, 1(9), 2379-2387. doi: 10.1021/acsapm.9b00493
  45. Hiraga, K.; Taniguchi, I.; Yoshida, S.; Kimura, Y.; Oda, K. Biodegradation of waste PET. EMBO Rep., 2019, 20(11), e49365. doi: 10.15252/embr.201949365 PMID: 31646721
  46. Kushwaha, A.; Goswami, L.; Singhvi, M.; Kim, B.S. Biodegradation of poly(ethylene terephthalate): Mechanistic insights, advances, and future innovative strategies. Chem. Eng. J., 2023, 457, 141230. doi: 10.1016/j.cej.2022.141230
  47. Nisticò, R. Polyethylene terephthalate (PET) in the packaging industry. Polym. Test., 2020, 90, 106707. doi: 10.1016/j.polymertesting.2020.106707
  48. Siracusa, V.; Blanco, I. Bio-polyethylene (bio-pe), bio-polypropylene (bio-pp) and bio-poly(ethylene terephthalate) (bio-pet): Recent developments in bio-based polymers analogous to petroleum-derived ones for packaging and engineering applications. Polymers, 2020, 12(8), 1641. doi: 10.3390/polym12081641 PMID: 32718011
  49. Wei, B.; Zhao, Y.; Wei, Y.; Yao, J.; Chen, X.; Shao, Z. Morphology and properties of a new biodegradable material prepared from zein and poly(butylene adipate-terephthalate) by reactive blending. ACS Omega, 2019, 4(3), 5609-5616. doi: 10.1021/acsomega.9b00210 PMID: 31459715
  50. İlhan, Z.; Gümüşderelioğlu, M. Oriented fibrous poly (butylene adipate-co-terephthalate) matrices with nanotopographic features: Production and characterization. Colloids Surf. A Physicochem. Eng. Asp., 2023, 672, 131667. doi: 10.1016/j.colsurfa.2023.131667
  51. Fu, Y.; Wu, G.; Bian, X.; Zeng, J.; Weng, Y. Biodegradation behavior of poly(butylene adipate-co-terephthalate) (pbat), poly(lactic acid) (pla), and their blend in freshwater with sediment. Molecules, 2020, 25(17), 3946. doi: 10.3390/molecules25173946 PMID: 32872416
  52. Jia, H.; Zhang, M.; Weng, Y.; Zhao, Y.; Li, C.; Kanwal, A. Degradation of poly(butylene adipate-co-terephthalate) by Stenotrophomonas sp. YCJ1 isolated from farmland soil. J. Environ. Sci., 2021, 103, 50-58. doi: 10.1016/j.jes.2020.10.001 PMID: 33743918
  53. Rafiqah, S.A.; Khalina, A.; Harmaen, A.S.; Tawakkal, I.A.; Zaman, K.; Asim, M.; Nurrazi, M.N.; Lee, C.H. A review on properties and application of bio-based poly(butylene succinate). Polymers, 2021, 13(9), 1436. doi: 10.3390/polym13091436 PMID: 33946989
  54. Boucher, D.S. Solubility parameters and solvent affinities for polycaprolactone: A comparison of methods. J. Appl. Polym. Sci., 2020, 137(30), 48908. doi: 10.1002/app.48908
  55. Heimowska, A.; Morawska, M.; Bocho-Janiszewska, A. Biodegradation of poly(ε-caprolactone) in natural water environments. Pol. J. Chem. Technol., 2017, 19(1), 120-126. doi: 10.1515/pjct-2017-0017
  56. Atanasova, N.; Paunova-Krasteva, T.; Stoitsova, S.; Radchenkova, N.; Boyadzhieva, I.; Petrov, K.; Kambourova, M. Degradation of poly(ε-caprolactone) by a thermophilic community and brevibacillus thermoruber strain 7 isolated from bulgarian hot spring. Biomolecules, 2021, 11(10), 1488. doi: 10.3390/biom11101488 PMID: 34680121
  57. Malikmammadov, E.; Tanir, T.E.; Kiziltay, A.; Hasirci, V.; Hasirci, N. PCL and PCL-based materials in biomedical applications. J. Biomater. Sci. Polym. Ed., 2018, 29(7-9), 863-893. doi: 10.1080/09205063.2017.1394711 PMID: 29053081
  58. Aliotta, L.; Seggiani, M.; Lazzeri, A.; Gigante, V.; Cinelli, P. A brief review of poly (butylene succinate) (pbs) and its main copolymers: Synthesis, blends, composites, biodegradability, and applications. Polymers, 2022, 14(4), 844. doi: 10.3390/polym14040844 PMID: 35215757
  59. Cooper, C.J.; Mohanty, A.K.; Misra, M. Electrospinning process and structure relationship of biobased poly(butylene succinate) for nanoporous fibers. ACS Omega, 2018, 3(5), 5547-5557. doi: 10.1021/acsomega.8b00332 PMID: 31458758
  60. Kim, S.H.; Cho, J.Y.; Cho, D.H.; Jung, H.J.; Kim, B.C.; Bhatia, S.K.; Park, S.H.; Park, K.; Yang, Y.H. Acceleration of polybutylene succinate biodegradation by Terribacillus sp. JY49 isolated from a marine environment. Polymers, 2022, 14(19), 3978. doi: 10.3390/polym14193978 PMID: 36235926
  61. Fredi, G.; Dorigato, A. Recycling of bioplastic waste: A review. Adv. Ind. Eng. Polym. Res., 2021, 4(3), 159-177. doi: 10.1016/j.aiepr.2021.06.006
  62. Casalini, T.; Rossi, F.; Castrovinci, A.; Perale, G. A perspective on polylactic acid-based polymers use for nanoparticles synthesis and applications. Front. Bioeng. Biotechnol., 2019, 7, 259. doi: 10.3389/fbioe.2019.00259 PMID: 31681741
  63. da Silva, D.; Kaduri, M.; Poley, M.; Adir, O.; Krinsky, N.; Shainsky-Roitman, J.; Schroeder, A. Biocompatibility, biodegradation and excretion of polylactic acid (PLA) in medical implants and theranostic systems. Chem. Eng. J., 2018, 340, 9-14. doi: 10.1016/j.cej.2018.01.010 PMID: 31384170
  64. Bubpachat, T.; Sombatsompop, N.; Prapagdee, B. Isolation and role of polylactic acid-degrading bacteria on degrading enzymes productions and PLA biodegradability at mesophilic conditions. Polym. Degrad. Stabil., 2018, 152, 75-85. doi: 10.1016/j.polymdegradstab.2018.03.023
  65. Balla, E.; Daniilidis, V.; Karlioti, G.; Kalamas, T.; Stefanidou, M.; Bikiaris, N.D.; Vlachopoulos, A.; Koumentakou, I.; Bikiaris, D.N. Poly(lactic acid): A versatile biobased polymer for the future with multifunctional properties—from monomer synthesis, polymerization techniques and molecular weight increase to pla applications. Polymers, 2021, 13(11), 1822. doi: 10.3390/polym13111822 PMID: 34072917
  66. Available from: https://www.chemsrc.com/en/cas/34346-01-5_1470921.html
  67. Makadia, H.K.; Siegel, S.J. Poly lactic-co-glycolic acid (plga) as biodegradable controlled drug delivery carrier. Polymers, 2011, 3(3), 1377-1397. doi: 10.3390/polym3031377 PMID: 22577513
  68. Kemme, M.; Prokesch, I.; Heinzel-Wieland, R. Comparative study on the enzymatic degradation of poly(lactic-co-glycolic acid) by hydrolytic enzymes based on the colorimetric quantification of glycolic acid. Polym. Test., 2011, 30(7), 743-748. doi: 10.1016/j.polymertesting.2011.06.009
  69. Virlan, M.J.R.; Miricescu, D.; Totan, A.; Greabu, M.; Tanase, C.; Sabliov, C.M.; Caruntu, C.; Calenic, B. Current uses of poly(lactic-co-glycolic acid) in the dental field: A comprehensive. Rev. J. Chem., 2015, 2015, 1-12. doi: 10.1155/2015/525832
  70. Keskin, G.; Kızıl, G.; Bechelany, M.; Pochat-Bohatier, C.; Öner, M. Potential of polyhydroxyalkanoate (PHA) polymers family as substitutes of petroleum based polymers for packaging applications and solutions brought by their composites to form barrier materials. Pure Appl. Chem., 2017, 89(12), 1841-1848. doi: 10.1515/pac-2017-0401
  71. Vandi, L.J.; Chan, C.; Werker, A.; Richardson, D.; Laycock, B.; Pratt, S. Wood-PHA composites: Mapping opportunities. Polymers, 2018, 10(7), 751. doi: 10.3390/polym10070751 PMID: 30960676
  72. Sehgal, R.; Gupta, R. Polyhydroxyalkanoate and its efficient production: An eco-friendly approach towards development. 3 Biotech, 2020, 10(12), 549. doi: 10.1007/s13205-020-02550-5
  73. Volova, T.G. Biodegradation of polyhydroxyalkanoates in natural soils. J. Sib. Fed. Univ. Biol., 2015, 8(2), 152-167. doi: 10.17516/1997-1389-2015-8-2-152-167
  74. Volova, T.G.; Prudnikova, S.V.; Vinogradova, O.N.; Syrvacheva, D.A.; Shishatskaya, E.I. Microbial degradation of polyhydroxyalkanoates with different chemical compositions and their biodegradability. Microb. Ecol., 2017, 73(2), 353-367. doi: 10.1007/s00248-016-0852-3 PMID: 27623963
  75. Koller, M. Biodegradable and biocompatible polyhydroxy-alkanoates (pha): auspicious microbial macromolecules for pharmaceutical and therapeutic applications. Molecules, 2018, 23(2), 362. doi: 10.3390/molecules23020362 PMID: 29419813
  76. Koster, S.; Bani-Estivals, M.; Bonuomo, M.; Bradley, E.; Chagnon, M.; Garcia, M.L.; Godts, F.; Gude, T.; Helling, R.; Paseiro-Losada, P.; Pieper, G.; Rennen, M.; Simat, T.; Spack, L. Guidance on best practices on the risk assessment of non-intentionally added substances (NIAS) in food contact materials and articles. In: ILSI Europe Report Series; , 2016.
  77. Hahladakis, J.N.; Velis, C.A.; Weber, R.; Iacovidou, E.; Purnell, P. An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling. J. Hazard. Mater., 2018, 344, 179-199. doi: 10.1016/j.jhazmat.2017.10.014 PMID: 29035713
  78. Tsochatzis, E.; Lopes, J.; Gika, H.; Theodoridis, G. Polystyrene biodegradation by tenebrio molitor larvae: Identification of generated substances using a GC-MS untargeted screening method. Polymers, 2020, 13(1), 17. doi: 10.3390/polym13010017 PMID: 33374608
  79. Arianna, P.; Paola, S.; Luciano, D.M.; Loredana, I. Non-listed nias exposure assessment: Comparison of different tools. Chem. Eng. Trans., 2019, 74, 1399-1404. doi: 10.3303/CET1974234
  80. Geueke, B. Fpf Dossier: Non-Intentionally Added Substances (Nias); 2nd Edition, 2018. doi: 10.5281/ZENODO.1265331
  81. Guidance on best available techniques and best environmental practices for the recycling and disposal of articles containing polybrominated diphenyl ethers (pbdes) listed under the stockholm convention on persistent organic pollutants 2015.
  82. He, Y.J.; Qin, Y.; Zhang, T.L.; Zhu, Y.Y.; Wang, Z.J.; Zhou, Z.S.; Xie, T.Z.; Luo, X.D. Migration of (non-) intentionally added substances and microplastics from microwavable plastic food containers. J. Hazard. Mater., 2021, 417, 126074. doi: 10.1016/j.jhazmat.2021.126074 PMID: 34015709
  83. Muncke, J.; Andersson, A-M.; Backhaus, T.; Boucher, J.M.; Carney Almroth, B.; Castillo Castillo, A.; Chevrier, J.; Demeneix, B.A.; Emmanuel, J.A.; Fini, J-B. Impacts of food contact chemicals on human health: A consensus statement. Environ. Health, 2020, 19(1), 25. doi: 10.1186/s12940-020-0572-5
  84. Santoro, A.; Chianese, R.; Troisi, J.; Richards, S.; Nori, S.L.; Fasano, S.; Guida, M.; Plunk, E.; Viggiano, A.; Pierantoni, R.; Meccariello, R. Neuro-toxic and reproductive effects of BPA. Curr. Neuropharmacol., 2019, 17(12), 1109-1132. doi: 10.2174/1570159X17666190726112101 PMID: 31362658
  85. Di Pietro, P.; D’Auria, R.; Viggiano, A.; Ciaglia, E.; Meccariello, R.; Russo, R.D.; Puca, A.A.; Vecchione, C.; Nori, S.L.; Santoro, A. Bisphenol A induces DNA damage in cells exerting immune surveillance functions at peripheral and central level. Chemosphere, 2020, 254, 126819. doi: 10.1016/j.chemosphere.2020.126819 PMID: 32334263
  86. Sree, C.G.; Buddolla, V.; Lakshmi, B.A.; Kim, Y-J. Phthalate toxicity mechanisms: An update. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol., 2023, 263, 109498. doi: 10.1016/j.cbpc.2022.109498
  87. Yates, M.R.; Barlow, C.Y. Life cycle assessments of biodegradable, commercial biopolymers—A critical review. Resour. Conserv. Recycling, 2013, 78, 54-66. doi: 10.1016/j.resconrec.2013.06.010
  88. Porta, R. The plastics sunset and the bio-plastics sunrise. Coatings, 2019, 9(8), 526. doi: 10.3390/coatings9080526
  89. Cao, G.; Cai, Z. Getting health hazards of inhaled nano/ microplastics into focus: Expectations and challenges. Environ. Sci. Technol., 2023, 57(9), 3461-3463. doi: 10.1021/acs.est.3c00029 PMID: 36812144
  90. Nor, N.H.M.; Kooi, M.; Diepens, N.J.; Koelmans, A.A. Lifetime accumulation of microplastic in children and adults. Environ. Sci. Technol., 2021, 55(8), 5084-5096. doi: 10.1021/acs.est.0c07384 PMID: 33724830
  91. Kole, P.J.; Löhr, A.J.; Van Belleghem, F.; Ragas, A. Wear and tear of tyres: A stealthy source of microplastics in the environment. Int. J. Environ. Res. Public Health, 2017, 14(10), 1265. doi: 10.3390/ijerph14101265 PMID: 29053641
  92. Prata, J.C.; da Costa, J.P.; Lopes, I.; Duarte, A.C.; Rocha-Santos, T. Environmental exposure to microplastics: An overview on possible human health effects. Sci. Total Environ., 2020, 702, 134455. doi: 10.1016/j.scitotenv.2019.134455 PMID: 31733547
  93. Grote, K.; Brüstle, F.; Vlacil, A.K. Cellular and systemic effects of micro- and nanoplastics in mammals—what we know so far. Materials, 2023, 16(8), 3123. doi: 10.3390/ma16083123 PMID: 37109957
  94. Karlsson, H.; Lindbom, J.; Ghafouri, B.; Lindahl, M.; Tagesson, C.; Gustafsson, M.; Ljungman, A.G. Wear particles from studded tires and granite pavement induce pro-inflammatory alterations in human monocyte-derived macrophages: A proteomic study. Chem. Res. Toxicol., 2011, 24(1), 45-53. doi: 10.1021/tx100281f PMID: 21117676
  95. Li, Y.; Shi, T.; Li, X.; Sun, H.; Xia, X.; Ji, X.; Zhang, J.; Liu, M.; Lin, Y.; Zhang, R.; Zheng, Y.; Tang, J. Inhaled tire-wear microplastic particles induced pulmonary fibrotic injury via epithelial cytoskeleton rearrangement. Environ. Int., 2022, 164, 107257. doi: 10.1016/j.envint.2022.107257 PMID: 35486965
  96. Mantecca, P.; Sancini, G.; Moschini, E.; Farina, F.; Gualtieri, M.; Rohr, A.; Miserocchi, G.; Palestini, P.; Camatini, M. Lung toxicity induced by intratracheal instillation of size-fractionated tire particles. Toxicol. Lett., 2009, 189(3), 206-214. doi: 10.1016/j.toxlet.2009.05.023 PMID: 19501637
  97. Islam, S.U.; Shehzad, A.; Ahmed, M.B.; Lee, Y.S. Intranasal delivery of nanoformulations: A potential way of treatment for neurological disorders. Molecules, 2020, 25(8), 1929. doi: 10.3390/molecules25081929 PMID: 32326318
  98. Oberdörster, G.; Sharp, Z.; Atudorei, V.; Elder, A.; Gelein, R.; Kreyling, W.; Cox, C. Translocation of inhaled ultrafine particles to the brain. Inhal. Toxicol., 2004, 16(6-7), 437-445. doi: 10.1080/08958370490439597 PMID: 15204759
  99. Elder, A.; Gelein, R.; Silva, V.; Feikert, T.; Opanashuk, L.; Carter, J.; Potter, R.; Maynard, A.; Ito, Y.; Finkelstein, J.; Oberdörster, G. Translocation of inhaled ultrafine manganese oxide particles to the central nervous system. Environ. Health Perspect., 2006, 114(8), 1172-1178. doi: 10.1289/ehp.9030 PMID: 16882521
  100. Qi, Y.; Wei, S.; Xin, T.; Huang, C.; Pu, Y.; Ma, J.; Zhang, C.; Liu, Y.; Lynch, I.; Liu, S. Passage of exogeneous fine particles from the lung into the brain in humans and animals. Proc. Natl. Acad. Sci. USA, 2022, 119(26), e2117083119. doi: 10.1073/pnas.2117083119 PMID: 35737841
  101. Chen, G.; Feng, Q.; Wang, J. Mini-review of microplastics in the atmosphere and their risks to humans. Sci. Total Environ., 2020, 703, 135504. doi: 10.1016/j.scitotenv.2019.135504 PMID: 31753503
  102. Karami, A.; Golieskardi, A.; Ho, Y.B.; Larat, V.; Salamatinia, B. Microplastics in eviscerated flesh and excised organs of dried fish. Sci. Rep., 2017, 7(1), 5473. doi: 10.1038/s41598-017-05828-6 PMID: 28710445
  103. Sangkham, S.; Faikhaw, O.; Munkong, N.; Sakunkoo, P.; Arunlertaree, C.; Chavali, M.; Mousazadeh, M.; Tiwari, A. A review on microplastics and nanoplastics in the environment: Their occurrence, exposure routes, toxic studies, and potential effects on human health. Mar. Pollut. Bull., 2022, 181, 113832. doi: 10.1016/j.marpolbul.2022.113832 PMID: 35716489
  104. Güven, O.; Gökdağ, K.; Jovanović, B.; Kıdeyş, A.E. Microplastic litter composition of the Turkish territorial waters of the mediterranean sea, and its occurrence in the gastrointestinal tract of fish. Environ. Pollut., 2017, 223, 286-294. doi: 10.1016/j.envpol.2017.01.025 PMID: 28117186
  105. Han, J.; Yan, J.; Li, K.; Lin, B.; Lai, W.; Bian, L.; Jia, R.; Liu, X.; Xi, Z. Distribution of micro-nano PS, DEHP, and/or MEHP in mice and nerve cell models in vitro after exposure to micro-nano PS and DEHP. Toxics, 2023, 11(5), 441. doi: 10.3390/toxics11050441 PMID: 37235255
  106. Yang, Z.S.; Bai, Y.L.; Jin, C.H.; Na, J.; Zhang, R.; Gao, Y.; Pan, G.W.; Yan, L.J.; Sun, W. Evidence on invasion of blood, adipose tissues, nervous system and reproductive system of mice after a single oral exposure: Nanoplastics versus microplastics. Biomed. Environ. Sci., 2022, 35(11), 1025-1037. doi: 10.3967/bes2022.131 PMID: 36443255
  107. Lamparelli, E.P.; Marino, M.; Szychlinska, M.A.; Rocca, N.D.; Ciardulli, M.C.; Scala, P.; D’Auria, R.; Testa, A.; Viggiano, A.; Cappello, F.; Meccariello, R.; Porta, G.D.; Santoro, A. The other side of plastics: Bioplastic-based nanoparticles for drug delivery systems in the brain. Pharmaceutics, 2023, 15(11), 2549. doi: 10.3390/pharmaceutics15112549 PMID: 38004530
  108. Lee, J.A.; Kim, M.K.; Paek, H.J.; Kim, Y.R.; Kim, M.K.; Lee, J.K.; Jeong, J.; Choi, S.J.; Choi, S-J. Tissue distribution and excretion kinetics of orally administered silica nanoparticles in rats. Int. J. Nanomedicine, 2014, 9(Suppl. 2), 251-260. doi: 10.2147/IJN.S57939 PMID: 25565843
  109. Khan, A.W.; Farooq, M.; Hwang, M.J.; Haseeb, M.; Choi, S. Autoimmune neuroinflammatory diseases: Role of interleukins. Int. J. Mol. Sci., 2023, 24(9), 7960. doi: 10.3390/ijms24097960 PMID: 37175665
  110. Sofroniew, M.V. Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci., 2009, 32(12), 638-647. doi: 10.1016/j.tins.2009.08.002 PMID: 19782411
  111. Takata, F.; Nakagawa, S.; Matsumoto, J.; Dohgu, S. Blood-brain barrier dysfunction amplifies the development of neuroinflammation: Understanding of cellular events in brain microvascular endothelial cells for prevention and treatment of BBB dysfunction. Front. Cell. Neurosci., 2021, 15, 661838. doi: 10.3389/fncel.2021.661838 PMID: 34588955
  112. Takeshita, Y.; Obermeier, B.; Cotleur, A.C.; Spampinato, S.F.; Shimizu, F.; Yamamoto, E.; Sano, Y.; Kryzer, T.J.; Lennon, V.A.; Kanda, T.; Ransohoff, R.M. Effects of neuromyelitis optica–IgG at the blood-brain barrier in vitro. Neurol. Neuroimmunol. Neuroinflamm., 2017, 4(1), e311. doi: 10.1212/NXI.0000000000000311 PMID: 28018943
  113. Linnerbauer, M.; Rothhammer, V. Protective functions of reactive astrocytes following central nervous system insult. Front. Immunol., 2020, 11, 573256. doi: 10.3389/fimmu.2020.573256 PMID: 33117368
  114. Rostami, J.; Fotaki, G.; Sirois, J.; Mzezewa, R.; Bergström, J.; Essand, M.; Healy, L.; Erlandsson, A. Astrocytes have the capacity to act as antigen-presenting cells in the Parkinson’s disease brain. J. Neuroinflammation, 2020, 17(1), 119. doi: 10.1186/s12974-020-01776-7 PMID: 32299492
  115. Ranaivo, H.R.; Hodge, J.N.; Choi, N.; Wainwright, M.S. Albumin induces upregulation of matrix metalloproteinase-9 in astrocytes via MAPK and reactive oxygen species-dependent pathways. J. Neuroinflammation, 2012, 9(1), 645. doi: 10.1186/1742-2094-9-68 PMID: 22507553
  116. Corrigan, F.; Mander, K.A.; Leonard, A.V.; Vink, R. Neurogenic inflammation after traumatic brain injury and its potentiation of classical inflammation. J. Neuroinflammation, 2016, 13(1), 264. doi: 10.1186/s12974-016-0738-9 PMID: 27724914
  117. Sulimai, N.; Lominadze, D. Fibrinogen and neuroinflammation during traumatic brain injury. Mol. Neurobiol., 2020, 57(11), 4692-4703. doi: 10.1007/s12035-020-02012-2 PMID: 32776201
  118. Katsouri, L.; Birch, A.M.; Renziehausen, A.W.J.; Zach, C.; Aman, Y.; Steeds, H.; Bonsu, A.; Palmer, E.O.C.; Mirzaei, N.; Ries, M.; Sastre, M. Ablation of reactive astrocytes exacerbates disease pathology in a model of Alzheimer’s disease. Glia, 2020, 68(5), 1017-1030. doi: 10.1002/glia.23759 PMID: 31799735
  119. Colombo, E.; Farina, C. Astrocytes: Key regulators of neuroinflammation. Trends Immunol., 2016, 37(9), 608-620. doi: 10.1016/j.it.2016.06.006 PMID: 27443914
  120. Salman, M.M.; Kitchen, P.; Halsey, A.; Wang, M.X.; Törnroth-Horsefield, S.; Conner, A.C.; Badaut, J.; Iliff, J.J.; Bill, R.M. Emerging roles for dynamic aquaporin-4 subcellular relocalization in CNS water homeostasis. Brain, 2022, 145(1), 64-75. doi: 10.1093/brain/awab311 PMID: 34499128
  121. Iliff, J.J.; Wang, M.; Liao, Y.; Plogg, B.A.; Peng, W.; Gundersen, G.A.; Benveniste, H.; Vates, G.E.; Deane, R.; Goldman, S.A.; Nagelhus, E.A.; Nedergaard, M. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci. Transl. Med., 2012, 4(147), 147ra111. doi: 10.1126/scitranslmed.3003748 PMID: 22896675
  122. Aspelund, A.; Antila, S.; Proulx, S.T.; Karlsen, T.V.; Karaman, S.; Detmar, M.; Wiig, H.; Alitalo, K. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J. Exp. Med., 2015, 212(7), 991-999. doi: 10.1084/jem.20142290 PMID: 26077718
  123. Louveau, A.; Smirnov, I.; Keyes, T.J.; Eccles, J.D.; Rouhani, S.J.; Peske, J.D.; Derecki, N.C.; Castle, D.; Mandell, J.W.; Lee, K.S.; Harris, T.H.; Kipnis, J. Structural and functional features of central nervous system lymphatic vessels. Nature, 2015, 523(7560), 337-341. doi: 10.1038/nature14432 PMID: 26030524
  124. Mogensen, F.L.H.; Delle, C.; Nedergaard, M. The glymphatic system (En)during inflammation. Int. J. Mol. Sci., 2021, 22(14), 7491. doi: 10.3390/ijms22147491 PMID: 34299111
  125. Louveau, A.; Herz, J.; Alme, M.N.; Salvador, A.F.; Dong, M.Q.; Viar, K.E.; Herod, S.G.; Knopp, J.; Setliff, J.C.; Lupi, A.L.; Da Mesquita, S.; Frost, E.L.; Gaultier, A.; Harris, T.H.; Cao, R.; Hu, S.; Lukens, J.R.; Smirnov, I.; Overall, C.C.; Oliver, G.; Kipnis, J. CNS lymphatic drainage and neuroinflammation are regulated by meningeal lymphatic vasculature. Nat. Neurosci., 2018, 21(10), 1380-1391. doi: 10.1038/s41593-018-0227-9 PMID: 30224810
  126. Hsu, S.J.; Zhang, C.; Jeong, J.; Lee, S.; McConnell, M.; Utsumi, T.; Iwakiri, Y. Enhanced meningeal lymphatic drainage ameliorates neuroinflammation and hepatic encephalopathy in cirrhotic rats. Gastroenterology, 2021, 160(4), 1315-1329.e13. doi: 10.1053/j.gastro.2020.11.036 PMID: 33227282
  127. Da Mesquita, S.; Papadopoulos, Z.; Dykstra, T.; Brase, L.; Farias, F.G.; Wall, M.; Jiang, H.; Kodira, C.D.; de Lima, K.A.; Herz, J.; Louveau, A.; Goldman, D.H.; Salvador, A.F.; Onengut-Gumuscu, S.; Farber, E.; Dabhi, N.; Kennedy, T.; Milam, M.G.; Baker, W.; Smirnov, I.; Rich, S.S.; Benitez, B.A.; Karch, C.M.; Perrin, R.J.; Farlow, M.; Chhatwal, J.P.; Holtzman, D.M.; Cruchaga, C.; Harari, O.; Kipnis, J. Meningeal lymphatics affect microglia responses and anti-Aβ immunotherapy. Nature, 2021, 593(7858), 255-260. doi: 10.1038/s41586-021-03489-0 PMID: 33911285
  128. Hamby, M.E.; Coppola, G.; Ao, Y.; Geschwind, D.H.; Khakh, B.S.; Sofroniew, M.V. Inflammatory mediators alter the astrocyte transcriptome and calcium signaling elicited by multiple G-protein-coupled receptors. J. Neurosci., 2012, 32(42), 14489-14510. doi: 10.1523/JNEUROSCI.1256-12.2012 PMID: 23077035
  129. Liddelow, S.A.; Guttenplan, K.A.; Clarke, L.E.; Bennett, F.C.; Bohlen, C.J.; Schirmer, L.; Bennett, M.L.; Münch, A.E.; Chung, W.S.; Peterson, T.C.; Wilton, D.K.; Frouin, A.; Napier, B.A.; Panicker, N.; Kumar, M.; Buckwalter, M.S.; Rowitch, D.H.; Dawson, V.L.; Dawson, T.M.; Stevens, B.; Barres, B.A. Neurotoxic reactive astrocytes are induced by activated microglia. Nature, 2017, 541(7638), 481-487. doi: 10.1038/nature21029 PMID: 28099414
  130. Baxter, P.S.; Dando, O.; Emelianova, K.; He, X.; McKay, S.; Hardingham, G.E.; Qiu, J. Microglial identity and inflammatory responses are controlled by the combined effects of neurons and astrocytes. Cell Rep., 2021, 34(12), 108882. doi: 10.1016/j.celrep.2021.108882 PMID: 33761343
  131. Santoro, A.; Spinelli, C.C.; Martucciello, S.; Nori, S.L.; Capunzo, M.; Puca, A.A.; Ciaglia, E. Innate immunity and cellular senescence: The good and the bad in the developmental and aged brain. J. Leukoc. Biol., 2018, 103(3), 509-524. doi: 10.1002/JLB.3MR0118-003R PMID: 29389023
  132. Lima, M.N.; Barbosa-Silva, M.C.; Maron-Gutierrez, T. Microglial priming in infections and its risk to neurodegenerative diseases. Front. Cell. Neurosci., 2022, 16, 878987. doi: 10.3389/fncel.2022.878987 PMID: 35783096
  133. Borst, K.; Dumas, A.A.; Prinz, M. Microglia: Immune and non-immune functions. Immunity, 2021, 54(10), 2194-2208. doi: 10.1016/j.immuni.2021.09.014 PMID: 34644556
  134. Rutsch, A.; Kantsjö, J.B.; Ronchi, F. The gut-brain axis: How microbiota and host inflammasome influence brain physiology and pathology. Front. Immunol., 2020, 11, 604179. doi: 10.3389/fimmu.2020.604179 PMID: 33362788
  135. Pokusaeva, K.; Johnson, C.; Luk, B.; Uribe, G.; Fu, Y.; Oezguen, N.; Matsunami, R.K.; Lugo, M.; Major, A.; Mori-Akiyama, Y.; Hollister, E.B.; Dann, S.M.; Shi, X.Z.; Engler, D.A.; Savidge, T.; Versalovic, J. GABA ‐producing Bifidobacterium dentium modulates visceral sensitivity in the intestine. Neurogastroenterol. Motil., 2017, 29(1), e12904. doi: 10.1111/nmo.12904 PMID: 27458085
  136. Roth, W.; Zadeh, K.; Vekariya, R.; Ge, Y.; Mohamadzadeh, M. Tryptophan metabolism and gut-brain homeostasis. Int. J. Mol. Sci., 2021, 22(6), 2973. doi: 10.3390/ijms22062973 PMID: 33804088
  137. Glebov, K.; Löchner, M.; Jabs, R.; Lau, T.; Merkel, O.; Schloss, P.; Steinhäuser, C.; Walter, J. Serotonin stimulates secretion of exosomes from microglia cells. Glia, 2015, 63(4), 626-634. doi: 10.1002/glia.22772 PMID: 25451814
  138. Rothhammer, V.; Borucki, D.M.; Tjon, E.C.; Takenaka, M.C.; Chao, C.C.; Ardura-Fabregat, A.; de Lima, K.A.; Gutiérrez-Vázquez, C.; Hewson, P.; Staszewski, O.; Blain, M.; Healy, L.; Neziraj, T.; Borio, M.; Wheeler, M.; Dragin, L.L.; Laplaud, D.A.; Antel, J.; Alvarez, J.I.; Prinz, M.; Quintana, F.J. Microglial control of astrocytes in response to microbial metabolites. Nature, 2018, 557(7707), 724-728. doi: 10.1038/s41586-018-0119-x PMID: 29769726
  139. Smith, S.E.P.; Li, J.; Garbett, K.; Mirnics, K.; Patterson, P.H. Maternal immune activation alters fetal brain development through interleukin-6. J. Neurosci., 2007, 27(40), 10695-10702. doi: 10.1523/JNEUROSCI.2178-07.2007 PMID: 17913903
  140. Choi, G.B.; Yim, Y.S.; Wong, H.; Kim, S.; Kim, H.; Kim, S.V.; Hoeffer, C.A.; Littman, D.R.; Huh, J.R. The maternal interleukin-17a pathway in mice promotes autism-like phenotypes in offspring. Science, 2016, 351(6276), 933-939. doi: 10.1126/science.aad0314 PMID: 26822608
  141. Qu, X.; Yu, X.; Liu, J.; Wang, J.; Liu, J. Pro-inflammatory cytokines are elevated in pregnant women with systemic lupus erythematosus in association with the activation of TLR4. Clin. Lab., 2016, 62. doi: 10.7754/Clin.Lab.2015.150709
  142. Vijay, K. Toll-like receptors in immunity and inflammatory diseases: Past, present, and future. Int. Immunopharmacol., 2018, 59, 391-412. doi: 10.1016/j.intimp.2018.03.002 PMID: 29730580
  143. Mattei, D.; Ivanov, A.; Ferrai, C.; Jordan, P.; Guneykaya, D.; Buonfiglioli, A.; Schaafsma, W.; Przanowski, P.; Deuther-Conrad, W.; Brust, P.; Hesse, S.; Patt, M.; Sabri, O.; Ross, T.L.; Eggen, B.J.L.; Boddeke, E.W.G.M.; Kaminska, B.; Beule, D.; Pombo, A.; Kettenmann, H.; Wolf, S.A. Maternal immune activation results in complex microglial transcriptome signature in the adult offspring that is reversed by minocycline treatment. Transl. Psychiatry, 2017, 7(5), e1120-e1120. doi: 10.1038/tp.2017.80 PMID: 28485733
  144. Matcovitch-Natan, O.; Winter, D.R.; Giladi, A.; Vargas Aguilar, S.; Spinrad, A.; Sarrazin, S.; Ben-Yehuda, H.; David, E.; Zelada González, F.; Perrin, P.; Keren-Shaul, H.; Gury, M.; Lara-Astaiso, D.; Thaiss, C.A.; Cohen, M.; Bahar Halpern, K.; Baruch, K.; Deczkowska, A.; Lorenzo-Vivas, E.; Itzkovitz, S.; Elinav, E.; Sieweke, M.H.; Schwartz, M.; Amit, I. Microglia development follows a stepwise program to regulate brain homeostasis. Science, 2016, 353(6301), aad8670. doi: 10.1126/science.aad8670 PMID: 27338705
  145. de Souza, D.F.; Wartchow, K.M.; Lunardi, P.S.; Brolese, G.; Tortorelli, L.S.; Batassini, C.; Biasibetti, R.; Gonçalves, C.A. Changes in astroglial markers in a maternal immune activation model of schizophrenia in wistar rats are dependent on sex. Front. Cell. Neurosci., 2015, 9, 489. doi: 10.3389/fncel.2015.00489 PMID: 26733814
  146. McCarthy, M.M.; Wright, C.L. Convergence of sex differences and the neuroimmune system in autism spectrum disorder. Biol. Psychiatry, 2017, 81(5), 402-410. doi: 10.1016/j.biopsych.2016.10.004 PMID: 27871670
  147. Vilella, A.J.; Severin, J.; Ureta-Vidal, A.; Heng, L.; Durbin, R.; Birney, E. Ensemblcompara genetrees: Complete, duplication-aware phylogenetic trees in vertebrates. Genome Res., 2009, 19(2), 327-335. doi: 10.1101/gr.073585.107 PMID: 19029536
  148. Golzio, C.; Willer, J.; Talkowski, M.E.; Oh, E.C.; Taniguchi, Y.; Jacquemont, S.; Reymond, A.; Sun, M.; Sawa, A.; Gusella, J.F.; Kamiya, A.; Beckmann, J.S.; Katsanis, N. KCTD13 is a major driver of mirrored neuroanatomical phenotypes of the 16p11.2 copy number variant. Nature, 2012, 485(7398), 363-367. doi: 10.1038/nature11091 PMID: 22596160
  149. Guo, S. Linking genes to brain, behavior and neurological diseases: What can we learn from zebrafish? Genes Brain Behav., 2004, 3(2), 63-74. doi: 10.1046/j.1601-183X.2003.00053.x PMID: 15005714
  150. Schmidt, R.; Strähle, U.; Scholpp, S. Neurogenesis in zebrafish – from embryo to adult. Neural Dev., 2013, 8(1), 3. doi: 10.1186/1749-8104-8-3 PMID: 23433260
  151. Wullimann, M.F.; Mueller, T. Teleostean and mammalian forebrains contrasted: Evidence from genes to behavior. J. Comp. Neurol., 2004, 475(2), 143-162. doi: 10.1002/cne.20183 PMID: 15211457
  152. Mhalhel, K.; Sicari, M.; Pansera, L.; Chen, J.; Levanti, M.; Diotel, N.; Rastegar, S.; Germanà, A.; Montalbano, G. Zebrafish: A model deciphering the impact of flavonoids on neurodegenerative disorders. Cells, 2023, 12(2), 252. doi: 10.3390/cells12020252 PMID: 36672187
  153. Cosacak, M.I.; Bhattarai, P.; De Jager, P.L.; Menon, V.; Tosto, G.; Kizil, C. Single cell/nucleus transcriptomics comparison in zebrafish and humans reveals common and distinct molecular responses to alzheimer’s disease. Cells, 2022, 11(11), 1807. doi: 10.3390/cells11111807 PMID: 35681503
  154. Bhattarai, P.; Thomas, A.K.; Cosacak, M.I.; Papadimitriou, C.; Mashkaryan, V.; Froc, C.; Reinhardt, S.; Kurth, T.; Dahl, A.; Zhang, Y.; Kizil, C. IL4/STAT6 signaling activates neural stem cell proliferation and neurogenesis upon Amyloid-β42 aggregation in adult zebrafish brain. Cell Rep., 2016, 17(4), 941-948. doi: 10.1016/j.celrep.2016.09.075 PMID: 27760324
  155. Botterell, Z.L.R.; Beaumont, N.; Dorrington, T.; Steinke, M.; Thompson, R.C.; Lindeque, P.K. Bioavailability and effects of microplastics on marine zooplankton: A review. Environ. Pollut., 2019, 245, 98-110. doi: 10.1016/j.envpol.2018.10.065 PMID: 30415037
  156. Prata, J.C.; da Costa, J.P.; Lopes, I.; Duarte, A.C.; Rocha-Santos, T. Effects of microplastics on microalgae populations: A critical review. Sci. Total Environ., 2019, 665, 400-405. doi: 10.1016/j.scitotenv.2019.02.132 PMID: 30772570
  157. Vo, H.C.; Pham, M.H. Ecotoxicological effects of microplastics on aquatic organisms: A review. Environ. Sci. Pollut. Res. Int., 2021, 28(33), 44716-44725. doi: 10.1007/s11356-021-14982-4 PMID: 34226995
  158. Prüst, M.; Meijer, J.; Westerink, R.H.S. The plastic brain: Neurotoxicity of micro- and nanoplastics. Part. Fibre Toxicol., 2020, 17(1), 24. doi: 10.1186/s12989-020-00358-y PMID: 32513186
  159. Sarasamma, S.; Audira, G.; Siregar, P.; Malhotra, N.; Lai, Y.H.; Liang, S.T.; Chen, J.R.; Chen, K.H.C.; Hsiao, C.D. Nanoplastics cause neurobehavioral impairments, reproductive and oxidative damages, and biomarker responses in zebrafish: Throwing up alarms of wide spread health risk of exposure. Int. J. Mol. Sci., 2020, 21(4), 1410. doi: 10.3390/ijms21041410 PMID: 32093039
  160. Xiang, C.; Chen, H.; Liu, X.; Dang, Y.; Li, X.; Yu, Y.; Li, B.; Li, X.; Sun, Y.; Ding, P.; Hu, G. UV-aged microplastics induces neurotoxicity by affecting the neurotransmission in larval zebrafish. Chemosphere, 2023, 324, 138252. doi: 10.1016/j.chemosphere.2023.138252 PMID: 36849020
  161. Yu, H.; Chen, Q.; Qiu, W.; Ma, C.; Gao, Z.; Chu, W.; Shi, H. Concurrent water- and foodborne exposure to microplastics leads to differential microplastic ingestion and neurotoxic effects in zebrafish. Water Res., 2022, 219, 118582. doi: 10.1016/j.watres.2022.118582 PMID: 35580390
  162. Lee, H.; Tran, C.M.; Jeong, S.; Kim, S.S.; Bae, M.A.; Kim, K-T. Seizurogenic effect of perfluorooctane sulfonate in zebrafish larvae. Neurotoxicology, 2022, 93, 257-264. doi: 10.1016/j.neuro.2022.10.007 PMID: 36243200
  163. Ding, P.; Xiang, C.; Li, X.; Chen, H.; Shi, X.; Li, X.; Huang, C.; Yu, Y.; Qi, J.; Li, A.J.; Zhang, L.; Hu, G. Photoaged microplastics induce neurotoxicity via oxidative stress and abnormal neurotransmission in zebrafish larvae (Danio rerio). Sci. Total Environ., 2023, 881, 163480. doi: 10.1016/j.scitotenv.2023.163480 PMID: 37068667
  164. Umamaheswari, S.; Priyadarshinee, S.; Bhattacharjee, M.; Kadirvelu, K.; Ramesh, M. Exposure to polystyrene microplastics induced gene modulated biological responses in zebrafish (Danio rerio). Chemosphere, 2021, 281, 128592. doi: 10.1016/j.chemosphere.2020.128592 PMID: 33077188
  165. Teng, M.; Zhao, X.; Wu, F.; Wang, C.; Wang, C.; White, J.C.; Zhao, W.; Zhou, L.; Yan, S.; Tian, S. Charge-specific adverse effects of polystyrene nanoplastics on zebrafish (Danio rerio) development and behavior. Environ. Int., 2022, 163, 107154. doi: 10.1016/j.envint.2022.107154 PMID: 35334375
  166. Mattsson, K.; Johnson, E.V.; Malmendal, A.; Linse, S.; Hansson, L.A.; Cedervall, T. Brain damage and behavioural disorders in fish induced by plastic nanoparticles delivered through the food chain. Sci. Rep., 2017, 7(1), 11452. doi: 10.1038/s41598-017-10813-0 PMID: 28904346
  167. Barboza, L.G.A.; Otero, X.L.; Fernández, E.V.; Vieira, L.R.; Fernandes, J.O.; Cunha, S.C.; Guilhermino, L. Are microplastics contributing to pollution-induced neurotoxicity? A pilot study with wild fish in a real scenario. Heliyon, 2023, 9(1), e13070. doi: 10.1016/j.heliyon.2023.e13070 PMID: 36711285
  168. Ding, J.; Zhang, S.; Razanajatovo, R.M.; Zou, H.; Zhu, W. Accumulation, tissue distribution, and biochemical effects of polystyrene microplastics in the freshwater fish red tilapia (Oreochromis niloticus). Environ. Pollut., 2018, 238, 1-9. doi: 10.1016/j.envpol.2018.03.001 PMID: 29529477
  169. Xiong, F.; Liu, J.; Xu, K.; Huang, J.; Wang, D.; Li, F.; Wang, S.; Zhang, J.; Pu, Y.; Sun, R. Microplastics induce neurotoxicity in aquatic animals at environmentally realistic concentrations: A meta-analysis. Environ. Pollut., 2023, 318, 120939. doi: 10.1016/j.envpol.2022.120939 PMID: 36581239
  170. Lionetto, M.G.; Caricato, R.; Calisi, A.; Giordano, M.E.; Schettino, T. Acetylcholinesterase as a biomarker in environmental and occupational medicine: New insights and future perspectives. BioMed Res. Int., 2013, 2013, 1-8. doi: 10.1155/2013/321213 PMID: 23936791
  171. Morais, L.H.; Schreiber, H.L., IV; Mazmanian, S.K. The gut microbiota–brain axis in behaviour and brain disorders. Nat. Rev. Microbiol., 2021, 19(4), 241-255. doi: 10.1038/s41579-020-00460-0 PMID: 33093662
  172. Qiao, R.; Sheng, C.; Lu, Y.; Zhang, Y.; Ren, H.; Lemos, B. Microplastics induce intestinal inflammation, oxidative stress, and disorders of metabolome and microbiome in zebrafish. Sci. Total Environ., 2019, 662, 246-253. doi: 10.1016/j.scitotenv.2019.01.245 PMID: 30690359
  173. Zhao, Y.; Qin, Z.; Huang, Z.; Bao, Z.; Luo, T.; Jin, Y. Effects of polyethylene microplastics on the microbiome and metabolism in larval zebrafish. Environ. Pollut., 2021, 282, 117039. doi: 10.1016/j.envpol.2021.117039 PMID: 33838439
  174. Teng, M.; Zhao, X.; Wang, C.; Wang, C.; White, J.C.; Zhao, W.; Zhou, L.; Duan, M.; Wu, F. Polystyrene nanoplastics toxicity to zebrafish: Dysregulation of the brain–intestine–microbiota axis. ACS Nano, 2022, 16(5), 8190-8204. doi: 10.1021/acsnano.2c01872 PMID: 35507640
  175. Luan, J.; Zhang, S.; Xu, Y.; Wen, L.; Feng, X. Effects of microplastic exposure on the early developmental period and circadian rhythm of zebrafish (Danio rerio): A comparative study of polylactic acid and polyglycolic acid. Ecotoxicol. Environ. Saf., 2023, 258, 114994. doi: 10.1016/j.ecoenv.2023.114994 PMID: 37167737
  176. Chagas, T.Q.; Freitas, Í.N.; Montalvão, M.F.; Nobrega, R.H.; Machado, M.R.F.; Charlie-Silva, I.; Araújo, A.P.C.; Guimarães, A.T.B.; Alvarez, T.G.S.; Malafaia, G. Multiple endpoints of polylactic acid biomicroplastic toxicity in adult zebrafish (Danio rerio). Chemosphere, 2021, 277, 130279. doi: 10.1016/j.chemosphere.2021.130279 PMID: 34384178
  177. de Oliveira, J.P.J.; Estrela, F.N.; Rodrigues, A.S.L.; Guimarães, A.T.B.; Rocha, T.L.; Malafaia, G. Behavioral and biochemical consequences of Danio rerio larvae exposure to polylactic acid bioplastic. J. Hazard. Mater., 2021, 404(Pt A), 124152. doi: 10.1016/j.jhazmat.2020.124152 PMID: 33068943
  178. Duan, Z.; Cheng, H.; Duan, X.; Zhang, H.; Wang, Y.; Gong, Z.; Zhang, H.; Sun, H.; Wang, L. Diet preference of zebrafish (Danio rerio) for bio-based polylactic acid microplastics and induced intestinal damage and microbiota dysbiosis. J. Hazard. Mater., 2022, 429, 128332. doi: 10.1016/j.jhazmat.2022.128332 PMID: 35114456
  179. Zhang, X.; Xia, M.; Su, X.; Yuan, P.; Li, X.; Zhou, C.; Wan, Z.; Zou, W. Photolytic degradation elevated the toxicity of polylactic acid microplastics to developing zebrafish by triggering mitochondrial dysfunction and apoptosis. J. Hazard. Mater., 2021, 413, 125321. doi: 10.1016/j.jhazmat.2021.125321 PMID: 33582471
  180. Chen, Q.; Gundlach, M.; Yang, S.; Jiang, J.; Velki, M.; Yin, D.; Hollert, H. Quantitative investigation of the mechanisms of microplastics and nanoplastics toward zebrafish larvae locomotor activity. Sci. Total Environ., 2017, 584-585, 1022-1031. doi: 10.1016/j.scitotenv.2017.01.156 PMID: 28185727
  181. Wan, Z.; Wang, C.; Zhou, J.; Shen, M.; Wang, X.; Fu, Z.; Jin, Y. Effects of polystyrene microplastics on the composition of the microbiome and metabolism in larval zebrafish. Chemosphere, 2019, 217, 646-658. doi: 10.1016/j.chemosphere.2018.11.070 PMID: 30448747
  182. Mak, C.W.; Ching-Fong Yeung, K.; Chan, K.M. Acute toxic effects of polyethylene microplastic on adult zebrafish. Ecotoxicol. Environ. Saf., 2019, 182, 109442. doi: 10.1016/j.ecoenv.2019.109442 PMID: 31352214
  183. Santos, D.; Félix, L.; Luzio, A.; Parra, S.; Cabecinha, E.; Bellas, J.; Monteiro, S.M. Toxicological effects induced on early life stages of zebrafish (Danio rerio) after an acute exposure to microplastics alone or co-exposed with copper. Chemosphere, 2020, 261, 127748. doi: 10.1016/j.chemosphere.2020.127748 PMID: 32738713
  184. Santos, D.; Félix, L.; Luzio, A.; Parra, S.; Bellas, J.; Monteiro, S.M. Single and combined acute and subchronic toxic effects of microplastics and copper in zebrafish (Danio rerio) early life stages. Chemosphere, 2021, 277, 130262. doi: 10.1016/j.chemosphere.2021.130262 PMID: 33773317
  185. Xue, Y.H.; Feng, L.S.; Xu, Z.Y.; Zhao, F.Y.; Wen, X.L.; Jin, T.; Sun, Z.X. The time-dependent variations of zebrafish intestine and gill after polyethylene microplastics exposure. Ecotoxicology, 2021, 30(10), 1997-2010. doi: 10.1007/s10646-021-02469-4 PMID: 34529203
  186. Limonta, G.; Mancia, A.; Abelli, L.; Fossi, M.C.; Caliani, I.; Panti, C. Effects of microplastics on head kidney gene expression and enzymatic biomarkers in adult zebrafish. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2021, 245, 109037. doi: 10.1016/j.cbpc.2021.109037 PMID: 33753304
  187. Guimarães, A.T.B.; Charlie-Silva, I.; Malafaia, G. Toxic effects of naturally-aged microplastics on zebrafish juveniles: A more realistic approach to plastic pollution in freshwater ecosystems. J. Hazard. Mater., 2021, 407, 124833. doi: 10.1016/j.jhazmat.2020.124833 PMID: 33352420
  188. Sheng, C.; Zhang, S.; Zhang, Y. The influence of different polymer types of microplastics on adsorption, accumulation, and toxicity of triclosan in zebrafish. J. Hazard. Mater., 2021, 402, 123733. doi: 10.1016/j.jhazmat.2020.123733 PMID: 33254764
  189. Bhagat, J.; Zang, L.; Nakayama, H.; Nishimura, N.; Shimada, Y. Effects of nanoplastic on toxicity of azole fungicides (ketoconazole and fluconazole) in zebrafish embryos. Sci. Total Environ., 2021, 800, 149463. doi: 10.1016/j.scitotenv.2021.149463 PMID: 34399343
  190. Zhu, J.; Zhang, Y.; Xu, Y.; Wang, L.; Wu, Q.; Zhang, Z.; Li, L. Effects of microplastics on the accumulation and neurotoxicity of methylmercury in zebrafish larvae. Mar. Environ. Res., 2022, 176, 105615. doi: 10.1016/j.marenvres.2022.105615 PMID: 35364423
  191. Liu, Y.; Wang, Y.; Li, N.; Jiang, S. Avobenzone and nanoplastics affect the development of zebrafish nervous system and retinal system and inhibit their locomotor behavior. Sci. Total Environ., 2022, 806(Pt 2), 150681. doi: 10.1016/j.scitotenv.2021.150681 PMID: 34599957
  192. Santos, D.; Luzio, A.; Bellas, J.; Monteiro, S.M. Microplastics- and copper-induced changes in neurogenesis and DNA methyltransferases in the early life stages of zebrafish. Chem. Biol. Interact., 2022, 363, 110021. doi: 10.1016/j.cbi.2022.110021 PMID: 35728670
  193. Santos, D.; Luzio, A.; Félix, L.; Bellas, J.; Monteiro, S.M. Oxidative stress, apoptosis and serotonergic system changes in zebrafish (Danio rerio) gills after long-term exposure to microplastics and copper. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2022, 258, 109363. doi: 10.1016/j.cbpc.2022.109363 PMID: 35525464
  194. Jeong, S.; Jang, S.; Kim, S.S.; Bae, M.A.; Shin, J.; Lee, K.B.; Kim, K.T. Size-dependent seizurogenic effect of polystyrene microplastics in zebrafish embryos. J. Hazard. Mater., 2022, 439, 129616. doi: 10.1016/j.jhazmat.2022.129616 PMID: 36104895
  195. Hanslik, L.; Huppertsberg, S.; Kämmer, N.; Knepper, T.P.; Braunbeck, T. Rethinking the relevance of microplastics as vector for anthropogenic contaminants: Adsorption of toxicants to microplastics during exposure in a highly polluted stream - Analytical quantification and assessment of toxic effects in zebrafish (Danio rerio). Sci. Total Environ., 2022, 816, 151640. doi: 10.1016/j.scitotenv.2021.151640 PMID: 34774627
  196. Aliakbarzadeh, F.; Rafiee, M.; Khodagholi, F.; Khorramizadeh, M.R.; Manouchehri, H.; Eslami, A.; Sayehmiri, F.; Mohseni-Bandpei, A. Adverse effects of polystyrene nanoplastic and its binary mixtures with nonylphenol on zebrafish nervous system: From oxidative stress to impaired neurotransmitter system. Environ. Pollut., 2023, 317, 120587. doi: 10.1016/j.envpol.2022.120587 PMID: 36336178
  197. Zhang, C.; Li, Y.; Yu, H.; Ye, L.; Li, T.; Zhang, X.; Wang, C.; Li, P.; Ji, H.; Gao, Q.; Dong, S. Nanoplastics promote arsenic-induced ROS accumulation, mitochondrial damage and disturbances in neurotransmitter metabolism of zebrafish (Danio rerio). Sci. Total Environ., 2023, 863, 161005. doi: 10.1016/j.scitotenv.2022.161005 PMID: 36539083
  198. Martin-Folgar, R.; Torres-Ruiz, M.; de Alba, M.; Cañas-Portilla, A.I.; González, M.C.; Morales, M. Molecular effects of polystyrene nanoplastics toxicity in zebrafish embryos (Danio rerio). Chemosphere, 2023, 312(Pt 1), 137077. doi: 10.1016/j.chemosphere.2022.137077 PMID: 36334746
  199. Zhou, R.; Zhou, D.; Yang, S.; Shi, Z.; Pan, H.; Jin, Q.; Ding, Z. Neurotoxicity of polystyrene nanoplastics with different particle sizes at environment-related concentrations on early zebrafish embryos. Sci. Total Environ., 2023, 872, 162096. doi: 10.1016/j.scitotenv.2023.162096 PMID: 36791853
  200. Torres-Ruiz, M.; de Alba González, M.; Morales, M.; Martin-Folgar, R.; González, M.C.; Cañas-Portilla, A.I.; De la Vieja, A. Neurotoxicity and endocrine disruption caused by polystyrene nanoparticles in zebrafish embryo. Sci. Total Environ., 2023, 874, 162406. doi: 10.1016/j.scitotenv.2023.162406 PMID: 36841402
  201. Wang, Q.; Chen, G.; Tian, L.; Kong, C.; Gao, D.; Chen, Y.; Junaid, M.; Wang, J. Neuro- and hepato-toxicity of polystyrene nanoplastics and polybrominated diphenyl ethers on early life stages of zebrafish. Sci. Total Environ., 2023, 857(Pt 2), 159567. doi: 10.1016/j.scitotenv.2022.159567 PMID: 36272476
  202. Murali, K.; Kenesei, K.; Li, Y.; Demeter, K.; Környei, Z.; Madarász, E. Uptake and bio-reactivity of polystyrene nanoparticles is affected by surface modifications, ageing and LPS adsorption: In vitro studies on neural tissue cells. Nanoscale, 2015, 7(9), 4199-4210. doi: 10.1039/C4NR06849A PMID: 25673096
  203. Schirinzi, G.F.; Pérez-Pomeda, I.; Sanchís, J.; Rossini, C.; Farré, M.; Barceló, D. Cytotoxic effects of commonly used nanomaterials and microplastics on cerebral and epithelial human cells. Environ. Res., 2017, 159, 579-587. doi: 10.1016/j.envres.2017.08.043 PMID: 28898803
  204. Hoelting, L.; Scheinhardt, B.; Bondarenko, O.; Schildknecht, S.; Kapitza, M.; Tanavde, V.; Tan, B.; Lee, Q.Y.; Mecking, S.; Leist, M.; Kadereit, S. A 3-dimensional human embryonic stem cell (hESC)-derived model to detect developmental neurotoxicity of nanoparticles. Arch. Toxicol., 2013, 87(4), 721-733. doi: 10.1007/s00204-012-0984-2 PMID: 23203475
  205. Shan, S.; Zhang, Y.; Zhao, H.; Zeng, T.; Zhao, X. Polystyrene nanoplastics penetrate across the blood-brain barrier and induce activation of microglia in the brain of mice. Chemosphere, 2022, 298, 134261. doi: 10.1016/j.chemosphere.2022.134261 PMID: 35302003
  206. Sun, J.; Wang, Y.; Du, Y.; Zhang, W.; Liu, Z.; Bai, J.; Cui, G.; Du, Z. Involvement of the JNK/HO 1/FTH1 signaling pathway in nanoplastic induced inflammation and ferroptosis of BV2 microglia cells. Int. J. Mol. Med., 2023, 52(1), 61. doi: 10.3892/ijmm.2023.5264 PMID: 37264973
  207. Kwon, W.; Kim, D.; Kim, H.Y.; Jeong, S.W.; Lee, S.G.; Kim, H.C.; Lee, Y.J.; Kwon, M.K.; Hwang, J.S.; Han, J.E.; Park, J.K.; Lee, S.J.; Choi, S.K. Microglial phagocytosis of polystyrene microplastics results in immune alteration and apoptosis in vitro and in vivo. Sci. Total Environ., 2022, 807(Pt 2), 150817. doi: 10.1016/j.scitotenv.2021.150817 PMID: 34627918
  208. Ban, M.; Shimoda, R.; Chen, J. Investigation of nanoplastic cytotoxicity using SH-SY5Y human neuroblastoma cells and polystyrene nanoparticles. Toxicol. In Vitro, 2021, 76, 105225. doi: 10.1016/j.tiv.2021.105225 PMID: 34293433
  209. Nie, J.; Shen, Y.; Roshdy, M.; Cheng, X.; Wang, G.; Yang, X. Polystyrene nanoplastics exposure caused defective neural tube morphogenesis through caveolae-mediated endocytosis and faulty apoptosis. Nanotoxicology, 2021, 15(7), 1-20. doi: 10.1080/17435390.2021.1930228 PMID: 34087085
  210. Tang, Q.; Li, T.; Chen, K.; Deng, X.; Zhang, Q.; Tang, H.; Shi, Z.; Zhu, T.; Zhu, J. PS-NPs induced neurotoxic effects in shsy-5y cells via autophagy activation and mitochondrial dysfunction. Brain Sci., 2022, 12(7), 952. doi: 10.3390/brainsci12070952 PMID: 35884757
  211. Hua, T.; Kiran, S.; Li, Y.; Sang, Q.X.A. Microplastics exposure affects neural development of human pluripotent stem cell-derived cortical spheroids. J. Hazard. Mater., 2022, 435, 128884. doi: 10.1016/j.jhazmat.2022.128884 PMID: 35483261
  212. Jeong, J.H.; Kang, S.H.; Kim, J.H.; Yu, K.S.; Lee, I.H.; Lee, Y.J.; Lee, J.H.; Lee, N.S.; Jeong, Y.G.; Kim, D.K.; Kim, G.H.; Lee, S.H.; Hong, S.K.; Han, S.Y.; Kang, B.S. Protective effects of poly(lactic-co-glycolic acid) nanoparticles loaded with erythropoietin stabilized by sodium cholate against glutamate-induced neurotoxicity. J. Nanosci. Nanotechnol., 2014, 14(11), 8365-8371. doi: 10.1166/jnn.2014.9927 PMID: 25958529
  213. Jin, H.; Yang, C.; Jiang, C.; Li, L.; Pan, M.; Li, D.; Han, X.; Ding, J. Evaluation of neurotoxicity in BALB/c mice following chronic exposure to polystyrene microplastics. Environ. Health Perspect., 2022, 130(10), 107002. doi: 10.1289/EHP10255 PMID: 36251724
  214. Lee, C.W.; Hsu, L.F.; Wu, I.L.; Wang, Y.L.; Chen, W.C.; Liu, Y.J.; Yang, L.T.; Tan, C.L.; Luo, Y.H.; Wang, C.C.; Chiu, H.W.; Yang, T.C.K.; Lin, Y.Y.; Chang, H.A.; Chiang, Y.C.; Chen, C.H.; Lee, M.H.; Peng, K.T.; Huang, C.C.Y. Exposure to polystyrene microplastics impairs hippocampus-dependent learning and memory in mice. J. Hazard. Mater., 2022, 430, 128431. doi: 10.1016/j.jhazmat.2022.128431 PMID: 35150991
  215. Zaheer, J.; Kim, H.; Ko, I.O.; Jo, E.K.; Choi, E.J.; Lee, H.J.; Shim, I.; Woo, H.; Choi, J.; Kim, G.H.; Kim, J.S. Pre/post-natal exposure to microplastic as a potential risk factor for autism spectrum disorder. Environ. Int., 2022, 161, 107121. doi: 10.1016/j.envint.2022.107121 PMID: 35134716
  216. Sincihu, Y.; Lusno, M.F.D.; Mulyasari, T.M.; Elias, S.M.; Sudiana, I.K.; Kusumastuti, K.; Sulistyorini, L.; Keman, S. Wistar rats hippocampal neurons response to blood low-density polyethylene microplastics: A pathway analysis of SOD, CAT, MDA, 8-OHdG expression in hippocampal neurons and blood serum Aβ42 levels. Neuropsychiatr. Dis. Treat., 2023, 19, 73-83. doi: 10.2147/NDT.S396556 PMID: 36636141
  217. Supraja, P.; Tripathy, S.; Singh, R.; Singh, V.; Chaudhury, G.; Singh, S.G. Towards point-of-care diagnosis of alzheimer’s disease: Multi-analyte based portable chemiresistive platform for simultaneous detection of β-amyloid (1-40) and (1-42) in plasma. Biosens. Bioelectron., 2021, 186, 113294. doi: 10.1016/j.bios.2021.113294 PMID: 33971525
  218. Yang, D.; Zhu, J.; Zhou, X.; Pan, D.; Nan, S.; Yin, R.; Lei, Q.; Ma, N.; Zhu, H.; Chen, J.; Han, L.; Ding, M.; Ding, Y. Polystyrene micro- and nano-particle coexposure injures fetal thalamus by inducing ROS-mediated cell apoptosis. Environ. Int., 2022, 166, 107362. doi: 10.1016/j.envint.2022.107362 PMID: 35749991
  219. McConnell, E.R.; McClain, M.A.; Ross, J.; LeFew, W.R.; Shafer, T.J. Evaluation of multi-well microelectrode arrays for neurotoxicity screening using a chemical training set. Neurotoxicology, 2012, 33(5), 1048-1057. doi: 10.1016/j.neuro.2012.05.001 PMID: 22652317
  220. Hu, M.; Palić, D. Micro- and nano-plastics activation of oxidative and inflammatory adverse outcome pathways. Redox Biol., 2020, 37, 101620. doi: 10.1016/j.redox.2020.101620 PMID: 32863185
  221. Prokić, M.D.; Radovanović, T.B.; Gavrić, J.P.; Faggio, C. Ecotoxicological effects of microplastics: Examination of biomarkers, current state and future perspectives. Trends Analyt. Chem., 2019, 111, 37-46. doi: 10.1016/j.trac.2018.12.001
  222. Zheng, J.; Suh, S. Strategies to reduce the global carbon footprint of plastics. Nat. Clim. Chang., 2019, 9(5), 374-378. doi: 10.1038/s41558-019-0459-z
  223. Landrigan, P.J.; Stegeman, J.J.; Fleming, L.E.; Allemand, D.; Anderson, D.M.; Backer, L.C.; Brucker-Davis, F.; Chevalier, N.; Corra, L.; Czerucka, D.; Bottein, M.Y.D.; Demeneix, B.; Depledge, M.; Deheyn, D.D.; Dorman, C.J.; Fénichel, P.; Fisher, S.; Gaill, F.; Galgani, F.; Gaze, W.H.; Giuliano, L.; Grandjean, P.; Hahn, M.E.; Hamdoun, A.; Hess, P.; Judson, B.; Laborde, A.; McGlade, J.; Mu, J.; Mustapha, A.; Neira, M.; Noble, R.T.; Pedrotti, M.L.; Reddy, C.; Rocklöv, J.; Scharler, U.M.; Shanmugam, H.; Taghian, G.; Van de Water, J.A.J.M.; Vezzulli, L.; Weihe, P.; Zeka, A.; Raps, H.; Rampal, P. Human health and ocean pollution. Ann. Glob. Health, 2020, 86(1), 151. doi: 10.5334/aogh.2831 PMID: 33354517
  224. Gore, A.C.; Chappell, V.A.; Fenton, S.E.; Flaws, J.A.; Nadal, A.; Prins, G.S.; Toppari, J.; Zoeller, R.T. EDC-2: The endocrine society’s second scientific statement on endocrine-disrupting chemicals. Endocr. Rev., 2015, 36(6), E1-E150. doi: 10.1210/er.2015-1010 PMID: 26544531
  225. Woskie, S.R.; Bello, A.; Rennix, C.; Jiang, L.; Trivedi, A.N.; Savitz, D.A. Burn pit exposure assessment to support a cohort study of US veterans of the wars in Iraq and Afghanistan. J. Occup. Environ. Med., 2023, 65(6), 449-457. doi: 10.1097/JOM.0000000000002788 PMID: 36728333
  226. Re, D.B.; Yan, B.; Calderón-Garcidueñas, L.; Andrew, A.S.; Tischbein, M.; Stommel, E.W. A perspective on persistent toxicants in veterans and amyotrophic lateral sclerosis: Identifying exposures determining higher ALS risk. J. Neurol., 2022, 269(5), 2359-2377. doi: 10.1007/s00415-021-10928-5 PMID: 34973105
  227. Du Preez, M.; Van der Merwe, D.; Wyma, L.; Ellis, S.M. Assessing knowledge and use practices of plastic food packaging among young adults in South Africa: Concerns about chemicals and health. Int. J. Environ. Res. Public Health, 2021, 18(20), 10576. doi: 10.3390/ijerph182010576 PMID: 34682322
  228. Landrigan, P.J.; Raps, H.; Cropper, M.; Bald, C.; Brunner, M.; Canonizado, E.M.; Charles, D.; Chiles, T.C.; Donohue, M.J.; Enck, J.; Fenichel, P.; Fleming, L.E.; Ferrier-Pages, C.; Fordham, R.; Gozt, A.; Griffin, C.; Hahn, M.E.; Haryanto, B.; Hixson, R.; Ianelli, H.; James, B.D.; Kumar, P.; Laborde, A.; Law, K.L.; Martin, K.; Mu, J.; Mulders, Y.; Mustapha, A.; Niu, J.; Pahl, S.; Park, Y.; Pedrotti, M.L.; Pitt, J.A.; Ruchirawat, M.; Seewoo, B.J.; Spring, M.; Stegeman, J.J.; Suk, W.; Symeonides, C.; Takada, H.; Thompson, R.C.; Vicini, A.; Wang, Z.; Whitman, E.; Wirth, D.; Wolff, M.; Yousuf, A.K.; Dunlop, S. The minderoo-monaco commission on plastics and human health. Ann. Glob. Health, 2023, 89(1), 23. doi: 10.5334/aogh.4056 PMID: 36969097
  229. Pinilla, L.; Aguilar, E.; Dieguez, C.; Millar, R.P.; Tena-Sempere, M. Kisspeptins and reproduction: Physiological roles and regulatory mechanisms. Physiol. Rev., 2012, 92(3), 1235-1316. doi: 10.1152/physrev.00037.2010 PMID: 22811428
  230. Pierantoni, R.; Cobellis, G.; Meccariello, R.; Fasano, S. Evolutionary aspects of cellular communication in the vertebrate hypothalamo–hypophysio–gonadal axis. In: International Review of Cytology; Elsevier, 2002; Vol. 218, pp. 69-143e.
  231. Wang, J.; Li, Y.; Lu, L.; Zheng, M.; Zhang, X.; Tian, H.; Wang, W.; Ru, S. Polystyrene microplastics cause tissue damages, sexspecific reproductive disruption and transgenerational effects in marine medaka (Oryzias melastigma). Environ. Pollut., 2019, 254(Pt B), 113024. doi: 10.1016/j.envpol.2019.113024 PMID: 31454586
  232. Zhu, M.; Chernick, M.; Rittschof, D.; Hinton, D.E. Chronic dietary exposure to polystyrene microplastics in maturing Japanese medaka (Oryzias latipes). Aquat. Toxicol., 2020, 220, 105396. doi: 10.1016/j.aquatox.2019.105396 PMID: 31927063
  233. Sussarellu, R.; Suquet, M.; Thomas, Y.; Lambert, C.; Fabioux, C.; Pernet, M.E.J.; Le Goïc, N.; Quillien, V.; Mingant, C.; Epelboin, Y.; Corporeau, C.; Guyomarch, J.; Robbens, J.; Paul-Pont, I.; Soudant, P.; Huvet, A. Oyster reproduction is affected by exposure to polystyrene microplastics. Proc. Natl. Acad. Sci. USA, 2016, 113(9), 2430-2435. doi: 10.1073/pnas.1519019113 PMID: 26831072
  234. Qiang, L.; Cheng, J. Exposure to polystyrene microplastics impairs gonads of zebrafish (Danio rerio). Chemosphere, 2021, 263, 128161. doi: 10.1016/j.chemosphere.2020.128161 PMID: 33297137
  235. Chatterjee, A.; Maity, S.; Banerjee, S.; Dutta, S.; Adhikari, M.; Guchhait, R.; Biswas, C.; De, S.; Pramanick, K. Toxicological impacts of nanopolystyrene on zebrafish oocyte with insight into the mechanism of action: An expression-based analysis. Sci. Total Environ., 2022, 830, 154796. doi: 10.1016/j.scitotenv.2022.154796 PMID: 35341844
  236. Pitt, J.A.; Trevisan, R.; Massarsky, A.; Kozal, J.S.; Levin, E.D.; Di Giulio, R.T. Maternal transfer of nanoplastics to offspring in zebrafish (Danio rerio): A case study with nanopolystyrene. Sci. Total Environ., 2018, 643, 324-334. doi: 10.1016/j.scitotenv.2018.06.186 PMID: 29940444
  237. Duan, Z.; Duan, X.; Zhao, S.; Wang, X.; Wang, J.; Liu, Y.; Peng, Y.; Gong, Z.; Wang, L. Barrier function of zebrafish embryonic chorions against microplastics and nanoplastics and its impact on embryo development. J. Hazard. Mater., 2020, 395, 122621. doi: 10.1016/j.jhazmat.2020.122621 PMID: 32289630
  238. Feng, M.; Luo, J.; Wan, Y.; Zhang, J.; Lu, C.; Wang, M.; Dai, L.; Cao, X.; Yang, X.; Wang, Y. Polystyrene nanoplastic exposure induces developmental toxicity by activating the oxidative stress response and base excision repair pathway in zebrafish (Danio rerio). ACS Omega, 2022, 7(36), 32153-32163. doi: 10.1021/acsomega.2c03378 PMID: 36119974
  239. Lin, W.; Luo, H.; Wu, J.; Liu, X.; Cao, B.; Liu, Y.; Yang, P.; Yang, J. Polystyrene microplastics enhance the microcystin-LR-induced gonadal damage and reproductive endocrine disruption in zebrafish. Sci. Total Environ., 2023, 876, 162664. doi: 10.1016/j.scitotenv.2023.162664 PMID: 36894083
  240. Tarasco, M.; Gavaia, P.J.; Bensimon-Brito, A.; Cordelières, F.P.; Santos, T.; Martins, G.; de Castro, D.T.; Silva, N.; Cabrita, E.; Bebianno, M.J.; Stainier, D.Y.R.; Cancela, M.L.; Laizé, V. Effects of pristine or contaminated polyethylene microplastics on zebrafish development. Chemosphere, 2022, 303(Pt 3), 135198. doi: 10.1016/j.chemosphere.2022.135198 PMID: 35660050
  241. Gao, Y.; Li, A.; Zhang, W.; Pang, S.; Liang, Y.; Song, M. Assessing the toxicity of bisphenol A and its six alternatives on zebrafish embryo/larvae. Aquat. Toxicol., 2022, 246, 106154. doi: 10.1016/j.aquatox.2022.106154 PMID: 35390582
  242. Zhao, F.; Jiang, G.; Wei, P.; Wang, H.; Ru, S. Bisphenol S exposure impairs glucose homeostasis in male zebrafish (Danio rerio). Ecotoxicol. Environ. Saf., 2018, 147, 794-802. doi: 10.1016/j.ecoenv.2017.09.048 PMID: 28946120
  243. Yuan, M.; Chen, S.; Zeng, C.; Fan, Y.; Ge, W.; Chen, W. Estrogenic and non-estrogenic effects of bisphenol A and its action mechanism in the zebrafish model: An overview of the past two decades of work. Environ. Int., 2023, 176, 107976. doi: 10.1016/j.envint.2023.107976 PMID: 37236126
  244. Wang, L.; Zhu, Y.; Gu, J.; Yin, X.; Guo, L.; Qian, L.; Shi, L.; Guo, M.; Ji, G. The toxic effect of bisphenol AF and nanoplastic coexposure in parental and offspring generation zebrafish. Ecotoxicol. Environ. Saf., 2023, 251, 114565. doi: 10.1016/j.ecoenv.2023.114565 PMID: 36682183
  245. Leslie, H.A.; van Velzen, M.J.M.; Brandsma, S.H.; Vethaak, A.D.; Garcia-Vallejo, J.J.; Lamoree, M.H. Discovery and quantification of plastic particle pollution in human blood. Environ. Int., 2022, 163, 107199. doi: 10.1016/j.envint.2022.107199 PMID: 35367073
  246. Wen, S.; Chen, Y.; Tang, Y.; Zhao, Y.; Liu, S.; You, T.; Xu, H. Male reproductive toxicity of polystyrene microplastics: Study on the endoplasmic reticulum stress signaling pathway. Food Chem. Toxicol., 2023, 172, 113577. doi: 10.1016/j.fct.2022.113577 PMID: 36563925
  247. Zhao, T.; Shen, L.; Ye, X.; Bai, G.; Liao, C.; Chen, Z.; Peng, T.; Li, X.; Kang, X.; An, G. Prenatal and postnatal exposure to polystyrene microplastics induces testis developmental disorder and affects male fertility in mice. J. Hazard. Mater., 2023, 445, 130544. doi: 10.1016/j.jhazmat.2022.130544 PMID: 36493639
  248. An, R.; Wang, X.; Yang, L.; Zhang, J.; Wang, N.; Xu, F.; Hou, Y.; Zhang, H.; Zhang, L. Polystyrene microplastics cause granulosa cells apoptosis and fibrosis in ovary through oxidative stress in rats. Toxicology, 2021, 449, 152665. doi: 10.1016/j.tox.2020.152665 PMID: 33359712
  249. Deng, Y.; Yan, Z.; Shen, R.; Huang, Y.; Ren, H.; Zhang, Y. Enhanced reproductive toxicities induced by phthalates contaminated microplastics in male mice (Mus musculus). J. Hazard. Mater., 2021, 406, 124644. doi: 10.1016/j.jhazmat.2020.124644 PMID: 33321324
  250. Wei, Z.; Wang, Y.; Wang, S.; Xie, J.; Han, Q.; Chen, M. Comparing the effects of polystyrene microplastics exposure on reproduction and fertility in male and female mice. Toxicology, 2022, 465, 153059. doi: 10.1016/j.tox.2021.153059 PMID: 34864092
  251. Marcelino, R.C.; Cardoso, R.M.; Domingues, E.L.B.C.; Gonçalves, R.V.; Lima, G.D.A.; Novaes, R.D. The emerging risk of microplastics and nanoplastics on the microstructure and function of reproductive organs in mammals: A systematic review of preclinical evidence. Life Sci., 2022, 295, 120404. doi: 10.1016/j.lfs.2022.120404 PMID: 35176278
  252. Yuan, Y.; Qin, Y.; Wang, M.; Xu, W.; Chen, Y.; Zheng, L.; Chen, W.; Luo, T. Microplastics from agricultural plastic mulch films: A mini-review of their impacts on the animal reproductive system. Ecotoxicol. Environ. Saf., 2022, 244, 114030. doi: 10.1016/j.ecoenv.2022.114030 PMID: 36058163
  253. Maradonna, F.; Vandenberg, L.N.; Meccariello, R. Editorial: Endocrine-disrupting compounds in plastics and their effects on reproduction, fertility, and development. Front. Toxicol., 2022, 4, 886628. doi: 10.3389/ftox.2022.886628 PMID: 35399294
  254. Wu, H.; Liu, Q.; Yang, N.; Xu, S. Polystyrene-microplastics and DEHP co-exposure induced DNA damage, cell cycle arrest and necroptosis of ovarian granulosa cells in mice by promoting ROS production. Sci. Total Environ., 2023, 871, 161962. doi: 10.1016/j.scitotenv.2023.161962 PMID: 36775173
  255. Liu, Z.; Zhuan, Q.; Zhang, L.; Meng, L.; Fu, X.; Hou, Y. Polystyrene microplastics induced female reproductive toxicity in mice. J. Hazard. Mater., 2022, 424(Pt C), 127629. doi: 10.1016/j.jhazmat.2021.127629 PMID: 34740508
  256. Zeng, L.; Zhou, C.; Xu, W.; Huang, Y.; Wang, W.; Ma, Z.; Huang, J.; Li, J.; Hu, L.; Xue, Y.; Luo, T.; Zheng, L. The ovarian-related effects of polystyrene nanoplastics on human ovarian granulosa cells and female mice. Ecotoxicol. Environ. Saf., 2023, 257, 114941. doi: 10.1016/j.ecoenv.2023.114941 PMID: 37087970
  257. Park, E.J.; Han, J.S.; Park, E.J.; Seong, E.; Lee, G.H.; Kim, D.W.; Son, H.Y.; Han, H.Y.; Lee, B.S. Repeated-oral dose toxicity of polyethylene microplastics and the possible implications on reproduction and development of the next generation. Toxicol. Lett., 2020, 324, 75-85. doi: 10.1016/j.toxlet.2020.01.008 PMID: 31954868
  258. Wei, Y.; Zhou, Y.; Long, C.; Wu, H.; Hong, Y.; Fu, Y.; Wang, J.; Wu, Y.; Shen, L.; Wei, G. Polystyrene microplastics disrupt the blood-testis barrier integrity through ROS-Mediated imbalance of mTORC1 and mTORC2. Environ. Pollut., 2021, 289, 117904. doi: 10.1016/j.envpol.2021.117904 PMID: 34371264
  259. Jin, H.; Yan, M.; Pan, C.; Liu, Z.; Sha, X.; Jiang, C.; Li, L.; Pan, M.; Li, D.; Han, X.; Ding, J. Chronic exposure to polystyrene microplastics induced male reproductive toxicity and decreased testosterone levels via the LH-mediated LHR/cAMP/PKA/StAR pathway. Part. Fibre Toxicol., 2022, 19(1), 13. doi: 10.1186/s12989-022-00453-2 PMID: 35177090
  260. Hou, L.; Wang, D.; Yin, K.; Zhang, Y.; Lu, H.; Guo, T.; Li, J.; Zhao, H.; Xing, M. Polystyrene microplastics induce apoptosis in chicken testis via crosstalk between NF-κB and Nrf2 pathways. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2022, 262, 109444. doi: 10.1016/j.cbpc.2022.109444 PMID: 36007826
  261. Hou, B.; Wang, F.; Liu, T.; Wang, Z. Reproductive toxicity of polystyrene microplastics: In vivo experimental study on testicular toxicity in mice. J. Hazard. Mater., 2021, 405, 124028. doi: 10.1016/j.jhazmat.2020.124028 PMID: 33087287
  262. Xie, X.; Deng, T.; Duan, J.; Xie, J.; Yuan, J.; Chen, M. Exposure to polystyrene microplastics causes reproductive toxicity through oxidative stress and activation of the p38 MAPK signaling pathway. Ecotoxicol. Environ. Saf., 2020, 190, 110133. doi: 10.1016/j.ecoenv.2019.110133 PMID: 31896473
  263. Zhou, Y.; Xu, W.; Yuan, Y.; Luo, T. What is the Impact of Bisphenol A on sperm function and related signaling pathways: A Mini-review? Curr. Pharm. Des., 2020, 26(37), 4822-4828. doi: 10.2174/1381612826666200821113126 PMID: 32954995
  264. Sui, A.; Yao, C.; Chen, Y.; Li, Y.; Yu, S.; Qu, J.; Wei, H.; Tang, J.; Chen, G. Polystyrene nanoplastics inhibit StAR expression by activating HIF-1α via ERK1/2 MAPK and AKT pathways in TM3 Leydig cells and testicular tissues of mice. Food Chem. Toxicol., 2023, 173, 113634. doi: 10.1016/j.fct.2023.113634 PMID: 36709824
  265. Jin, H.; Ma, T.; Sha, X.; Liu, Z.; Zhou, Y.; Meng, X.; Chen, Y.; Han, X.; Ding, J. Polystyrene microplastics induced male reproductive toxicity in mice. J. Hazard. Mater., 2021, 401, 123430. doi: 10.1016/j.jhazmat.2020.123430 PMID: 32659591
  266. Sun, Z.; Wen, Y.; Zhang, F.; Fu, Z.; Yuan, Y.; Kuang, H.; Kuang, X.; Huang, J.; Zheng, L.; Zhang, D. Exposure to nanoplastics induces mitochondrial impairment and cytomembrane destruction in leydig cells. Ecotoxicol. Environ. Saf., 2023, 255, 114796. doi: 10.1016/j.ecoenv.2023.114796 PMID: 36948006
  267. Mruk, D.D.; Cheng, C.Y. The mammalian blood-testis barrier: Its biology and regulation. Endocr. Rev., 2015, 36(5), 564-591. doi: 10.1210/er.2014-1101 PMID: 26357922
  268. Xu, W.; Yuan, Y.; Tian, Y.; Cheng, C.; Chen, Y.; Zeng, L.; Yuan, Y.; Li, D.; Zheng, L.; Luo, T. Oral exposure to polystyrene nanoplastics reduced male fertility and even caused male infertility by inducing testicular and sperm toxicities in mice. J. Hazard. Mater., 2023, 454, 131470. doi: 10.1016/j.jhazmat.2023.131470 PMID: 37116333
  269. Hu, R.; Yao, C.; Li, Y.; Qu, J.; Yu, S.; Han, Y.; Chen, G.; Tang, J.; Wei, H. Polystyrene nanoplastics promote CHIP-mediated degradation of tight junction proteins by activating IRE1α/XBP1s pathway in mouse Sertoli cells. Ecotoxicol. Environ. Saf., 2022, 248, 114332. doi: 10.1016/j.ecoenv.2022.114332 PMID: 36446169
  270. Hassine, M.B.H.; Venditti, M.; Rhouma, M.B.; Minucci, S.; Messaoudi, I. Combined effect of polystyrene microplastics and cadmium on rat blood-testis barrier integrity and sperm quality. Environ. Sci. Pollut. Res. Int., 2023, 30(19), 56700-56712. doi: 10.1007/s11356-023-26429-z PMID: 36928700
  271. Venditti, M.; Ben Hadj Hassine, M.; Messaoudi, I.; Minucci, S. The simultaneous administration of microplastics and cadmium alters rat testicular activity and changes the expression of PTMA, DAAM1 and PREP. Front. Cell Dev. Biol., 2023, 11, 1145702. doi: 10.3389/fcell.2023.1145702 PMID: 36968197
  272. Liu, J.; Ma, M.; Zhu, D.; Xia, T.; Qi, Y.; Yao, Y.; Guo, X.; Ji, R.; Chen, W. Polystyrene nanoplastics-enhanced contaminant transport: Role of irreversible adsorption in glassy polymeric domain. Environ. Sci. Technol., 2018, 52(5), 2677-2685. doi: 10.1021/acs.est.7b05211 PMID: 29420017
  273. Li, D.; Sun, W.; Jiang, X.; Yu, Z.; Xia, Y.; Cheng, S.; Mao, L.; Luo, S.; Tang, S.; Xu, S.; Zou, Z.; Chen, C.; Qiu, J.; Zhou, L. Polystyrene nanoparticles enhance the adverse effects of di-(2-ethylhexyl) phthalate on male reproductive system in mice. Ecotoxicol. Environ. Saf., 2022, 245, 114104. doi: 10.1016/j.ecoenv.2022.114104 PMID: 36174316
  274. Cui, H.; Yang, W.; Cui, Y.; Qi, L.; Jiang, X.; Li, M. Adverse effects of pristine and aged polystyrene microplastics in mice and their Nrf2-mediated defense mechanisms with tissue specificity. Environ. Sci. Pollut. Res. Int., 2023, 30(14), 39894-39906. doi: 10.1007/s11356-022-24918-1 PMID: 36602732
  275. Liu, T.; Hou, B.; Zhang, Y.; Wang, Z. Determination of biological and molecular attributes related to polystyrene microplastic-induced reproductive toxicity and its reversibility in male mice. Int. J. Environ. Res. Public Health, 2022, 19(21), 14093. doi: 10.3390/ijerph192114093 PMID: 36360968
  276. Rizwan, A.; Ijaz, M.U.; Hamza, A.; Anwar, H. Attenuative effect of astilbin on polystyrene microplastics induced testicular damage: Biochemical, spermatological and histopathological-based evidences. Toxicol. Appl. Pharmacol., 2023, 471, 116559. doi: 10.1016/j.taap.2023.116559 PMID: 37217007
  277. Ijaz, M.U.; Najam, S.; Hamza, A.; Azmat, R.; Ashraf, A.; Unuofin, J.O.; Lebelo, S.L.; Simal-Gandara, J. Pinostrobin alleviates testicular and spermatological damage induced by polystyrene microplastics in adult albino rats. Biomed. Pharmacother., 2023, 162, 114686. doi: 10.1016/j.biopha.2023.114686 PMID: 37044025
  278. Hamza, A.; Ijaz, M.U.; Anwar, H. Rhamnetin alleviates polystyrene microplastics-induced testicular damage by restoring biochemical, steroidogenic, hormonal, apoptotic, inflammatory, spermatogenic and histological profile in male albino rats. Hum. Exp. Toxicol., 2023, 42. doi: 10.1177/09603271231173378 PMID: 37122069
  279. D’Angelo, S.; Scafuro, M.; Meccariello, R. BPA and nutraceuticals, simultaneous effects on endocrine functions. Endocr. Metab. Immune Disord. Drug Targets, 2019, 19(5), 594-604. doi: 10.2174/1871530319666190101120119 PMID: 30621569
  280. Kim, S.; Kim, H.; Yim, Y.S.; Ha, S.; Atarashi, K.; Tan, T.G.; Longman, R.S.; Honda, K.; Littman, D.R.; Choi, G.B.; Huh, J.R. Maternal gut bacteria promote neurodevelopmental abnormalities in mouse offspring. Nature, 2017, 549(7673), 528-532. doi: 10.1038/nature23910 PMID: 28902840
  281. Han, V.X.; Patel, S.; Jones, H.F.; Dale, R.C. Maternal immune activation and neuroinflammation in human neurodevelopmental disorders. Nat. Rev. Neurol., 2021, 17(9), 564-579. doi: 10.1038/s41582-021-00530-8 PMID: 34341569
  282. Schwabl, P.; Köppel, S.; Königshofer, P.; Bucsics, T.; Trauner, M.; Reiberger, T.; Liebmann, B. Detection of various microplastics in human stool. Ann. Intern. Med., 2019, 171(7), 453-457. doi: 10.7326/M19-0618 PMID: 31476765
  283. Xu, J.L.; Lin, X.; Wang, J.J.; Gowen, A.A. A review of potential human health impacts of micro- and nanoplastics exposure. Sci. Total Environ., 2022, 851(Pt 1), 158111. doi: 10.1016/j.scitotenv.2022.158111 PMID: 35987230
  284. Wu, P.; Lin, S.; Cao, G.; Wu, J.; Jin, H.; Wang, C.; Wong, M.H.; Yang, Z.; Cai, Z. Absorption, distribution, metabolism, excretion and toxicity of microplastics in the human body and health implications. J. Hazard. Mater., 2022, 437, 129361. doi: 10.1016/j.jhazmat.2022.129361 PMID: 35749897
  285. La Merrill, M.A.; Vandenberg, L.N.; Smith, M.T.; Goodson, W.; Browne, P.; Patisaul, H.B.; Guyton, K.Z.; Kortenkamp, A.; Cogliano, V.J.; Woodruff, T.J.; Rieswijk, L.; Sone, H.; Korach, K.S.; Gore, A.C.; Zeise, L.; Zoeller, R.T. Consensus on the key characteristics of endocrine-disrupting chemicals as a basis for hazard identification. Nat. Rev. Endocrinol., 2020, 16(1), 45-57. doi: 10.1038/s41574-019-0273-8 PMID: 31719706

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Bentham Science Publishers, 2024