Solid-Phase Production of Low-Density Polyethylene Compositions with Reduced Graphene Oxide under Shear Deformations

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Nanocomposites of low-density polyethylene (LDPE) with a nanocarbon nanofiller, reduced graphene oxide (RGO) of different composition, have been obtained under conditions of high-temperature shear deformations in a rotary disperser. Structure and properties of the obtained nanocomposites have been studied using a wide range of physico-chemical methods of analysis, including laser diffraction, scanning electron microscopy, and measurement of mechanical and electrical parameters. The influence of the components ratio in the compositions on the characteristics of the resulting materials has been demonstrated.

Sobre autores

M. Gasymov

N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: s.rogovina@mail.ru
119991, Moscow, Russia

S. Rogovina

N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: s.rogovina@mail.ru
119991, Moscow, Russia

O. Kuznetsova

N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: s.rogovina@mail.ru
119991, Moscow, Russia

V. Shevchenko

N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences; Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences

Email: s.rogovina@mail.ru
119991, Moscow, Russia; 117393, Moscow, Russia

A. Berlin

N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Autor responsável pela correspondência
Email: s.rogovina@mail.ru
119991, Moscow, Russia

Bibliografia

  1. Jeffrey R.P., Daniel R.D., Christopher W.B. // Polymer. 2011. V. 52. P. 5.
  2. Layek R.K., Nandi A.K. // Polymer. 2013. V. 54. № 19. P. 5087.
  3. Alam F., Choosri M., Gupta T.K., Varadarajan K.M. // Mater. Sci. Eng. B. 2019. V. 241. P. 82.
  4. Barra A., Santos J.D.C., Silva M.R.F., Nunes C. // Nanomaterials. 2020. V. 10. P. 1.
  5. Rafiee M.A., Rafiee J., Wang Z., Song H., Yu Z.-Z., Koratkar N. // ACS Nano. 2009. V. 3. № 3. P. 3884.
  6. Abbasi H., Antunes M., Velasco J.I. // Prog. Mater. Sci. 2019. V. 103. P. 319.
  7. Nasir A., Kausar A., Younus A. // Polym. Plast. Technol. Eng. 2015. V. 54. P. 750.
  8. Olanipekun O., Oyefusi A., Neelgund G.M., Oki A. // Spectrochim. Acta A. 2015. V. 149. P. 991.
  9. Zhu Y., Peng Q., Qin Y., Zhao X., Xu L., Chen Q., Li Y., Xu Z., He X. // ACS Appl. Nano Mater. 2020. V. 3. P. 9076.
  10. Pang Y., Yang J., Curtis T.E., Luo S., Huang D., Feng Z., Morales-Ferreiro J.O., Sapkota P., Lei F., Zhang J., Zhang Q., Lee E., Huang Y., Guo R., Ptasinska S., Roeder R.K., Luo T. // ACS Nano. 2019. V. 13. P. 1097.
  11. Sarker F., Karim N., Afroj S., Koncherry V., Novoselov K.S., Potluri P. // ACS Appl. Mater. Interfaces. 2018. V. 10. P. 34502.
  12. Chen M., Muniz A.R., Maroudas D. // ACS Appl. Mater. Interfaces. 2018. V. 10. P. 28898.
  13. Gobi N., Vijayakumar D., Keles O., Erogbogbo F. // ACS Omega. 2017. V. 2. P. 4356.
  14. Messina E., Leone N., Foti A., Marco G.D., Riccucci C., Carlo G.D., Maggio F.D., Cassata A. // ACS Appl. Mater. Interfaces. 2016. V. 8. P. 23244.
  15. Liu W., Do I., Fukushima H., Drzal L.T. // Carbon Letters. 2016. V. 11. № 4. P. 279.
  16. Potts J.R., Daniel R.D., Christopher W.B., Rodney S.R. // Polymer. 2011. V. 52. P. 5.
  17. Прут Э.В., Зеленецкий А.Н. // Успехи химии. 2001. Т. 70. № 1. С. 72.
  18. Rogovina S.Z., Gasymov M.M., Lomakin S.M., Kuznetsova O.P., Ermolaev I.M., Shevchenko V.G., Shapagin A V., Arbuzov A.A., Berlin A.A. // Mech. Compos. Mater. 2023. V. 58. № 6. P. 845.
  19. Rogovina S.Z., Aleksanyan K.V., Loginova A.A., Ivanushkina N.E., Vladimirov L.V., Prut E.V., Berlin A.A. // Starch – Starke. 2018. V. 70. № 7. P. 1700268.
  20. Rogovina S., Prut E., Aleksanyan K., Krashininnikov V., Perepelitsyna E., Shaskin D., Ivanushkina N., Berlin A. // J. Appl. Polym. Sci. 2019. V. 136. № 22. P. 47598.
  21. Rogovina S., Zhorina L., Gatin A., Prut E., Kuznetsova O., Yakhina A., Olkhov A., Samoylov N., Grishin M., Iordanskii A., Berlin A. // Polymers. 2020. V. 12. P.1088.
  22. Rogovina S., Lomakin S., Usachev S., Gasymov M., Kuznetsova O., Natalya S., Shevchenko V., Prut E., Berlin A. // Polym. Crystallization. 2022. V. 2022. P. 1.
  23. Rogovina S.Z., Lomakin S.M., Gasymov M.M., Kuznetsova O.P., Shevchenko V.G., Melnikov V.P., Berlin A.A. // Polymer Science D. 2023. V. 16. № 1. P. 161.
  24. Wu H., Lu C., Zhang W., Zhang X. // Mater. Des. 2013. V. 52. P. 621.
  25. Che J., Wu K., Lin Y., Wang K., Fu Q. // Composites A. 2017. V. 99. P. 32.
  26. Khanam P.N., AlMaadeed M.A., Ouederni M., Harkin-Jones E., Mayoral B., Hamilton A., Sun D. // Vacuum. 2016. V. 130. P. 63.
  27. Hari B.S., Kumar K.V.M., Krishnamurthy K., Kumar P.S., Gobinath V.K., Sachinbala R., Rajasekar R. // Mater. Today. 2020. V. 39. P. 1.
  28. Arbuzov A.A., Muradyan V.E., Tarasov B.P., Sokolov E.A., Babenko S.D. // Russ. J. Phys. Chem. 2016. V. 90. № 5. P. 663.
  29. Arbuzov A.A., Muradyan V.E., Tarasov B.P. // Izv. RAS Ser. Chem. 2013. V. 62. № 9. P. 1962.
  30. Blythe T., Bloor D. Electrical Properties of Polymers. Cambridge: Cambridge Univ. Press, 2008.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (67KB)
3.

Baixar (1MB)
4.

Baixar (1MB)
5.

Baixar (99KB)
6.

Baixar (357KB)
7.

Baixar (74KB)

Declaração de direitos autorais © М.М. Гасымов, С.З. Роговина, О.П. Кузнецова, В.Г. Шевченко, А.А. Берлин, 2023