Ocean bottom structure in the junction area of the King’s Trough and the Gnitsevich Plateau (North Atlantic)

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The paper, based on the data obtained during 57-th expedition of the R/V “Akademik Nikolaj Strakhov”, examines the structure of the north-western part King’s Trough and the Gnitsevich Plateau, forming a mesostructural cluster located on the eastern flank of the Mid-Atlantic Ridge in the North Atlantic. Bathymetric and hydromagnetic surveys, seismoacoustic profiling and bottom sampling by dredging were carried out. It has been shown that this part of the trough consists of 6 basins of different depths, subparallel and continuing each other along the strike, separated by median ridges and ledges. The flanks of the trough are formed by volcanic plateaus, which are built up by multi-dimensional cone-shaped volcanic structures. At the same time, the southern and northern flanks are complementary to each other both in depth and morphology, and merge into a single plateau in the area of the northwestern closure of the trough. An area of volcanic structures of various sizes and morphology was formed around the King’s Trough: cone-shaped structures, calderas, the Gnitsevich Plateau of several mountains on a common base. It is shown that the anomalous magnetic field of the study area is a superposition of linear and isometric anomalies, the latter associated with large volcanic mountains. Linear anomalies C6n and younger are located northwest of the King’s Trough and are not interrupted, and linear anomalies between C6n and C13n chrones are found only on the flanks of the trough, whereas they are absent in the area of basins. The recovered rock material can be divided into two main associations: spreading (nonporous basalts, dolerites, gabbros, mylonites) and volcanic (porous volcanics close to basalts). The rocks of the first of them form the sides of basins and median ridges, the second – plateaus and volcanic constructions. Limestones, breccias and Fe-Mn crusts are found in both associations. According to seismoacoustic profiling, the sedimentary cover of the study area was formed on oceanic basement that went through neotectonic deformations, with background pelagic sedimentation, landslides, debris flows and material transported by subbottom currents. Preliminary assumptions were made about the origin of the mesostructural cluster: King’s Trough – the Gnitsevich Plateau.

Texto integral

Acesso é fechado

Sobre autores

S. Skolotnev

Geological Institute Russian Academy of Sciences

Autor responsável pela correspondência
Email: sg_skol@mail.ru
Rússia, Moscow

A. Peyve

Geological Institute Russian Academy of Sciences

Email: sg_skol@mail.ru
Rússia, Moscow

S. Sokolov

Geological Institute Russian Academy of Sciences

Email: sg_skol@mail.ru
Rússia, Moscow

K. Dobrolyubova

Geological Institute Russian Academy of Sciences

Email: sg_skol@mail.ru
Rússia, Moscow

I. Veklich

Geological Institute Russian Academy of Sciences

Email: sg_skol@mail.ru
Rússia, Moscow

A. Ivanenko

Geological Institute Russian Academy of Sciences

Email: sg_skol@mail.ru
Rússia, Moscow

V. Bogolyubskii

Geological Institute Russian Academy of Sciences

Email: sg_skol@mail.ru
Rússia, Moscow

N. Chamov

Geological Institute Russian Academy of Sciences

Email: sg_skol@mail.ru
Rússia, Moscow

V. Dobrolyubov

Geological Institute Russian Academy of Sciences

Email: sg_skol@mail.ru
Rússia, Moscow

A. Denisova

Geological Institute Russian Academy of Sciences

Email: sg_skol@mail.ru
Rússia, Moscow

I. Patina

Geological Institute Russian Academy of Sciences

Email: sg_skol@mail.ru
Rússia, Moscow

V. Lyubinetskii

Institute of Oceanology, Russian Academy of Sciences

Email: sg_skol@mail.ru
Rússia, Moscow

A. Tkacheva

Geological Institute Russian Academy of Sciences

Email: sg_skol@mail.ru
Rússia, Moscow

D. Ilyukhina

Institute of Oceanology, Russian Academy of Sciences

Email: sg_skol@mail.ru
Rússia, Moscow

V. Fomina

Geological Institute Russian Academy of Sciences

Email: sg_skol@mail.ru
Rússia, Moscow

Bibliografia

  1. Skolotnev S.G., Peyve A.A., Dobrolyubova K.O. et al. Structure of the Ocean Floor in the Junction Area of King’s Trough and the Azores–Biscay Rise (North Atlantic) // Doklady Earth Sciences. 2024. V. 516. N. 2. P. 913–919.
  2. Searle R.C., Whitmarsh R.B. The structure of King’s Trough, Northeast Atlantic, from bathymetric, seismic and gravity studies // Geophys. J. R. Astron. Soc. 1978. V. 53. N. 2. P. 259–287.
  3. Cann J.R., Funnell B.M. Palmer ridge: a section through the upper part of the ocean crust? // Nature. 1967. V. 213. N. 5077. P. 661–664.
  4. Stebbins J., Thompson G. The nature and petrogenesis of intra-oceanic plate alkaline eruptive and plutonic rocks: King’s Trough, Northeast Atlantic // J. Volcanol. Geotherm. Res. 1978. V. 4. N. 3. P. 333–361.
  5. Kidd R.B., Searle R.C., Ramsay A.T.S. et al. The geology and formation of King’s Trough, northeast Atlantic // Ocean Marine. Geol. 1982. V. 48. N. 1. P. 1–30.
  6. Добрецов И.Л., Зоненшайн Л.П., Кузьмин М.И. и др. Разрез океанической коры трога Кинг (Центральная Атлантика) // Известия Академии Наук СССР. Серия Геологическая. 1991. № 8. C. 141–146.
  7. Лисицын А.П., Зоненшайн Л.П., Кузмин М.И., Харин Г.С. Магматические и метаморфические породы трога Кинг и хребта Палмер // Океанология. 1996. № 3. С. 398–409.
  8. Чернышева Е.А., Кузьмин М.И., Харин Г.С., Медведев А.Я. Вариации состава спрединговых базальтов трога Кинг (Центральная Атлантика) и их возможные причины // Доклады Академии наук. 2013. Т. 448. № 4. С. 446–451.
  9. Dürkefälden A. Origin and geodynamic evolution of King’s Trough: the Grand Canyon of the North Atlantic // Cruise No. M168. 2020. 99 p.
  10. Macchiavelli C., Vergés J., Schettino A. et al. A new southern North Atlantic isochron map: insights into the drift of the Iberian plate since the Late Cretaceous // J. Geophys. Res. Solid Earth. 2017. V. 122. N. 12. P. 9603–9626.
  11. Srivastava S.P., Roest W.R. King’s Trough: reactivated pseudo-fault of a propagating rift // Geophys. J. Int. 1992. N. 108. P. 143–150.
  12. GEBCO 15” Bathymetry Grid. Version 2019. (http://www.gebco.net).
  13. Пальшин Н.А., Иваненко А.Н., Городницкий А.М. и др. Геомагнитные исследования в Северной Атлантике // Океанология. 2023. Т. 63. № 5. С. 796–812.
  14. Seton M., Whittaker J., Wessel P. et al. Community infrastructure and repository for marine magnetic identifications // Geochemistry, Geophysics, Geosystems. 2014. V. 5. N. 4. P. 1629–1641.
  15. Gradstein, F.M., Ogg J.G., Smith A.G. A Geologic Time Scale // Cambridge Univ. Press. Cambridge. U. K. 2004. 500 р.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. The scheme of work in the area of the north-western end of the troga King. The red lines represent the tacks of multipath sonar, seismic acoustic profiling, and hydromagnetic surveying. Compiled on the basis of the GEBCO map [12]. The red circles indicate the location of the dredging stations, and the station numbers next to them (the indicated number corresponds to the following number in Table 1: 01 – S5701, 02 – S5702, etc.)

Baixar (367KB)
3. Fig. 2. Bathymetric map of the polygon and the boundaries of morphostructural provinces (red lines). The numbers indicate the morphostructures discussed in the text under the same number.

Baixar (227KB)
4. Fig. 3. Map of AMP graphs in the area of the polygon superimposed on the bathymetric map (a). Map of AMP isodynamics (b) The dots show the axes of numbered linear magnetic anomalies from the catalog [14], yellow lines mark their updated positions

Baixar (198KB)
5. Fig. 4. Fragments of ENS57 seismic sections (ParaSound and EdgeTech). I – in the Frin basin; II – in the Lower King basin; III – in the Middle King basin; IV – sound-scattering objects in the water column in the area of the Gnitsevich plateau. Explanations of the points indicated by arrows are given in the text.

Baixar (249KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025