УДК 616.314-089.844-77

ЗАМЕЩЕНИЕ ВКЛЮЧЕННЫХ ДЕФЕКТОВ ЗУБНЫХ РЯДОВ, ОСЛОЖНЕННЫХ ГОРИЗОНТАЛЬНЫМИ ВТОРИЧНЫМИ ДЕФОРМАЦИЯМИ, НЕСЪЕМНО-РАЗБОРНЫМ МОСТОВИДНЫМ ПРОТЕЗОМ

А. В. Старкова

Пермский государственный медицинский университет им. академика Е.А. Вагнера, г. Пермь, Российская Федерация

REPLACEMENT OF INCLUDED DENTITION DEFECTS COMPLICATED BY HORISONTAL SECONDARY DEFORMITIES WITH FIXED-DISASSEMBLED BRIDGE PROSTHESIS

A. V. Starkova

Perm State Medical University named after EA. Wagner, Perm, Russian Federation

Цель. Повышение эффективности ортопедического лечения пациентов с дефектами зубных рядов, осложненными горизонтальными вторичными деформациями, несъемно-разборным мостовидным протезом.

Материалы и методы. С учетом имеющихся недостатков мостовидных конструкций, а также возросшей информированности пациентов и осознанного отношения к своему здоровью был разработан несъемно-разборный мостовидный протез для замещения включенных дефектов зубных рядов, протяженностью 1–2 зуба, осложненных горизонтальными вторичными деформациями.

Результаты. Протез изготавливается из монолитного материала, в частности, может быть цельнометаллическим или цельнокерамическим, например, выполненным из диоксида циркония, без облицовки.

Выводы. Разработанная конструкция обладает высокой эстетикой и достаточной прочностью, ее применение позволяет сократить сроки ортопедического лечения, повысить эффективность функции жевания, уменьшить травматичность при препарировании опорных зубов за счет исключения их депульпирования и сошлифовывания минимального объема твердых тканей.

Ключевые слова. Вторичные деформации, несъемно-разборный мостовидный протез, диоксид циркония, высокая эстетика, уменьшение травматичности.

Aim. To elevate the efficiency of orthopedic treatment of patients with dentition defects complicated by horisontal secondary deformities of fixed-disassembled bridge prosthesis.

Materials and methods. Taking into account the disadvantages of bridge constructions as well as raised awareness of patients and careful attitude to their health, fixed-disassembled bridge prosthesis was developed for replacement of the included 1-2-teeth-length dentition defects.

Results. Prosthesis is produced from monolithic material, in particular, it can be all-metal or all-ceramic, for example, manufactured from zirconium oxide without coating.

Conclusions. The developed construction is esthetic and firm enough, its use permits to decrease the terms of orthopedic treatment, to heighten efficiency of chewing function, to reduce traumatic level during

© Старкова А. В., 2015 e-mail: starkova.a.v@yandex.ru тел. 8 (342) 286 16 45

[Старкова А. В. – аспирант кафедры ортопедической стоматологии].

preparation of supporting teeth owing to exclusion of tooth pulp removal and polishing of minimum hard tissue volume.

Key words. Secondary deformity, fixed-disassembled bridge prosthesis, zirconium oxide, high aesthetics, decreased traumatism.

Введение

Деформация зубных рядов является одним из симптомов частичной потери зубов. Горизонтальные вторичные деформации возникают после потери одного из рядом стоящих зубов и более и выявляются при изменении положения зубов, ограничивающих дефект. Выраженность деформации напрямую зависит от многих факторов: возраста пациента, времени, прошедшего после удаления зуба, вида прикуса, состояния тканей пародонта. Вторичные деформации, осложняя клинику частичной потери зубов, затрудняют выбор и проведение ортопедического лечения, а в отдельных случаях делают его невыполнимым [2]. В настоящее время для замещения включенных дефектов в боковых отделах зубных рядов, осложненных вторичными деформациями, используются различные способы ортопедического лечения: несъемные (мостовидные, адгезивные) и съемные (бюгельные или пластиночные) протезы, также возможно применение внутрикостных дентальных имплантатов [4].

При отсутствии 1–2 зубов в боковом отделе нижней челюсти, осложненном вторичными деформациями, ортопедическое стоматологическое лечение больных, как правило, осуществляется с помощью традиционных мостовидных протезов [5], при изготовлении последних устранение конвергенции опорных зубов зачастую проводится за счет сошлифовывания большого объема твердых тканей зубов. Это приводит к возникновению отдаленных осложнений, процент которых остается достаточно высоким, что требует совершенствования методов ортопедического лечения.

Недостатками традиционных MOCTOвидных протезов являются: невозможность использования их при конвергенции опорных зубов более 30° без депульпирования и сошлифовывания большого слоя твердых тканей зубов; невозможность проведения реставрационных работ при поломке тела составного мостовидного протеза; скол облицовочного слоя; перелом культи опорного зуба; имеются сложности в применении данных конструкций в области фронтальной группы зубов; возможны подвижность элементов замковой части составного мостовидного протеза и, как следствие, перегрузка пародонта опорных зубов.

Целью работы явилось повышение эффективности ортопедического лечения пациентов с дефектами зубных рядов, осложненными горизонтальными вторичными деформациями, несъемно-разборным протезом.

МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЯ

Для повышения эффективности ортопедического лечения пациентов с дефектами зубных рядов, осложненными горизонтальными вторичными деформациями, с помощью метода биомеханического моделирования была разработана конструкция несъемно-разборного мостовидного протеза. Для моделирования формы зубного ряда были использованы анатомические данные по форме коронок правых нижних моляров и премоляров [1]. Была создана трехмерная модель несъемно-разборного мостовидного протеза, пригодная для расчетов в программном пакете ANSYS [3].

Результаты и их обсуждение

С учетом вышеперечисленных недостатков мостовидных конструкций, а также возросшей информированности пациентов и осознанного отношения их к своему здоровью была разработана новая конструкция несъемно-разборного мостовидного протеза для замещения включенных дефектов, локализованных в боковых отделах зубных рядов, осложненных горизонтальными вторичными деформациями. Модель конструкции представляет собой несъемно-разборный мостовидный протез (рис. 1-3), состоящий из трех несъемных частей: двух коронок и промежуточной части с окклюзионной накладкой на дистальную опорную коронку. Части несъемно-разборного мостовидного протеза соединяются друг с другом посредством двух экстракоронарных неактивируемых, в виде трубки, рельсовых замковых креплений и окклюзионной накладки на дистальную опорную коронку (см. рис. 2). Патрицы экстракоронарных аттачменов располагаются на медиальной и дистальной коронках опорных зубов, имеющих наклон в сторону дефекта 15 и 35 градусов, а матрицы – в промежуточной части мостовидного протеза (см. рис. 2).

Протез из цельного диоксида циркония обладает рядом преимуществ, в частности, повышенной прочностью за счет профилактики возникновения поверхностных сколов, поскольку отсутствует облицовочный слой; исключением стираемости зубов-антагонистов, так как материал имеет низкий уровень пористости.

Несъемно-разборный мостовидный протез изготавливают следующим образом: после получения высокопрочной разборной модели подготавливают модели опорных зубов мостовидного протеза, на которых при помощи параллелометра моделируют восковые заготовки – коронки с патрицами и промежуточную часть с матрицами, дистальная опорная коронка имеет углубление

Рис. 1. Несъемно-разборный мостовидный протез на модели

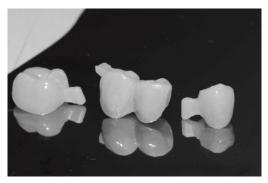


Рис. 2. Опорные коронки несъемно-разборного мостовидного протеза с патрицами и промежуточная часть с окклюзионной накладкой

Рис. 3. Несъемно-разборный мостовидный протез зафиксирован в полости рта

на окклюзионной поверхности для накладки, которая моделируется заодно с промежуточной частью. Далее производится сканирование модели: задается граница препарирования опорных зубов, после чего формируется единая фрезерная ось, все части несъемноразборного мостовидного протеза фрезеруются отдельно. В этом виде мостовидного протеза замковое крепление является силовым и обеспечивает максимальную ретенцию. При фиксации в полости рта опорные коронки и части замка фиксируются на композитный материал двойного отверждения.

Конструкционные параметры протеза обоснованы с позиции биомеханического моделирования, в частности, определено, что сумма значений напряжений в протезе с применением окклюзионной накладки уменьшается на 5,6 %; максимальные напряжения в замковом соединении с первым премоляром в конструкции с применением окклюзионной накладки уменьшаются на 5,7 %, со вторым моляром – на 21,2 %.

Выводы

Разработанная с помощью метода биомеханического моделирования конструкция несъемно-разборного мостовидного протеза имеет преимущества перед аналогами, а также традиционными мостовидными протезами при замещении включенных дефектов боковых отделов зубных рядов, осложненных вторичными деформациями. Они заключаются в повышении эффективности функции жевания; уменьшении травматичности для больного за счет возможности препарирования опорных зубов с минимальным снятием твердых тканей и исключения их депульпирования; в возможности использования конструкции при конвергенции опорных зубов более 30°; в сокращении сроков изготовления; высокой эстетике; в упрощении способа установки несущего элемента. Введение в конструкцию окклюзионной накладки на дистальную опорную коронку, выполненной заодно с промежуточной частью несъемно-разборного мостовидного протеза, позволяет равномерно распределять жевательную нагрузку, увеличить площадь соприкосновения частей протеза и замещает межокклюзионное пространство в области мезиальных бугров зубов-антагонистов.

Клинико-лабораторные этапы изготовления предлагаемой конструкции не являются сложными для врачей ортопедов и зубных техников, что дает возможность применения несъемно-разборного мостовидного протеза в широкой стоматологической практике.

Благодарности

Автор выражает благодарность заведующему кафедрой теоретической механики и биомеханики Пермского национального исследовательского политехнического университета кандидату физико-математических наук В. А. Лохову, сотрудникам зуботехнической лаборатории «Гутен Таг» (г. Пермы) и лично Д. Ю. Карпинскому за помощь в выполнении работы.

Библиографический список

- 1. *Гайворонский И. В., Петрова Т. Б.* Анатомия зубов человека: учеб. пособие. СПб.: ЭЛБИ-СПб 2005; 56.
- 2. *Каламкаров Х. А.* Ортопедическое лечение с применением металлокерамических протезов. М.: Медицинское информационное агентство 2003; 216.
- 3. Няшин Ю. И., Рогожников Г. И., Асташина Н. Б. Биомеханические аспекты ортопедического лечения пациентов с патологией зубочелюстной системы: монография. Пермь: Изд-во Перм. нац. исслед. политехн. ун-та 2013; 206.
- 4. Руководство к практическим занятиям по ортопедической стоматологии для студентов V курсов. 3-я кн.; под ред. И. Ю. Лебеденко, В. В. Еричева, Б. П. Маркова. М.: Практическая медицина 2012; 512.
- 5. *Трезубов В. Н., Щербаков А. С., Мишнев Л. М., Фадеев Р. А.* Ортопедическая стоматология (факультетский курс): учеб. для медицинских вузов; под ред. проф. В. Н. Трезубова. 8 изд-е, перераб. и доп. СПб.: Фолиант 2010; 656.

Материал поступил в редакцию 15.01.2015