УДК 616.36-002.2-022: 578.891]-078.33

ИССЛЕДОВАНИЕ ИНТЕРЛЕЙКИНА-17 И ПОЛИМОРФИЗМА ГЕНА ИНТЕРЛЕЙКИНА-17F (RS763780) ПРИ ХРОНИЧЕСКОМ ГЕПАТИТЕ С

И. А. Булатова

Пермская государственная медицинская академия им. ак. Е.А. Вагнера, г. Пермь, Россия

INVESTIGATION OF INTERLEUKIN-17 AND INTERLEUKIN-17F GENE (RS763780) POLYMORPHISM IN CHRONIC HEPATITIS C

I. A. Bulatova

Perm State Academy of Medicine named after Academician E. A. Wagner, Perm, Russian Federation

Цель. Изучить уровень интерлейкина-17 (ИЛ-17) и полиморфизм гена ИЛ-17F (rs763780) у пациентов с хроническим гепатитом С (ХГС).

Материалы и методы. Исследование биохимических показателей аланинаминотрансферазы, аспартатаминотрансферазы, гамма-глутамилтрансферазы, лактатдегидрогеназы, маркеров липидного спектра, уровень ИЛ-17 в сыворотке крови и анализ однонуклеотидной замены (SNP) в гене ИЛ-17F (rs763780) у 150 человек (50 доноров без хронического вирусного гепатита и 100 пациентов с ХГС), проживающих на территории Пермского края.

Результаты. Повышение уровня ИЛ-17 отмечалось у 14% больных ХГС. В обеих группах обследованных преобладающим являлся генотип СС. Патологические гомозиготы GG в обеих когортах отсутствовали. Не было установлено достоверного отличия частот генотипов в двух когортах (χ^2 =0,70; p=0,71). Соотношение аллелей изучаемого маркера в двух группах также характеризовалось большим сходством (χ^2 =0,69; p=0,41). Отсутствовала взаимосвязь между полиморфизмом гена ИЛ-17F (гs763780) и содержанием ИЛ-17 в сыворотке крови. Выявлены достоверные взаимосвязи ИЛ-17 с маркерами цитолиза, холестаза и общим холестерином и найдены взаимосвязи полиморфизма гена ИЛ-17F (гs763780) с показателями липидного спектра сыворотки крови.

Выводы. В ходе исследования не было установлено статистически значимого отличия частот генотипов и аллелей маркера rs763780 гена ИЛ-17F между группами здоровых индивидуумов и лиц с ХГС.

Ключевые слова. Цитокины, интерлейкин-17, ген интерлейкина-17F, полиморфизм, хронический гепатит.

Aim. To study interleukin-17 (IL-17) level and IL-17F gene (rs763780) polymorphism in patients with chronic hepatitis C (CHC).

Materials and methods. Biochemical indices of alanine aminotransferase, aspartate aminotransferase, gamma-glutamiltransferase, lactate dehydrogenase, lipid spectrum markers, blood serum IL-17 level and single-nucleotide substitution in IL-17F gene (rs763780) were investigated and analyzed in 150 persons (50 donors without chronic viral hepatitis and 100 patients with CHC) living in Perm Territory.

Results. The increased IL-17 level was noted in 14% of CHC patients. In both groups of the examined patients predominated CC genotype. There were no pathological homozygotes GG in both cohorts. No reliable difference in genotype frequencies in both cohorts (χ^2 =0,70; p=0,71) was stated. Allele ratio of the studied marker in both groups was also characterized by great similarity (χ^2 =0,69; p=0,41). No correlation

[©] Булатова И. А., 2013 e-mail: bula.1977@mail.ru тел. 89028391780

[[]Булатова И. А. – кандидат медицинских наук, доцент кафедры клинической лабораторной диагностики ФПК и ППС].

between IL-17F gene (rs763780) polymorphism and blood serum IL-17 content was established. Reliable correlation between IL-17 and cytolysis, cholestasis and total cholesterol markers was revealed; correlation between IL-17F gene (rs763780) polymorphism and blood serum lipid spectrum was found.

Conclusion. During the study, no statistically significant difference between genotype frequencies and marker alleles of IL-17F gene in healthy persons and CHC patients was detected.

Key words. Cytokines, interleukin-17, interleukin-17F gene, polymorphism, chronic hepatitis.

Введение

Распространение вирусного гепатита С затрагивает около 170 млн людей по всему миру, он служит ведущей причиной цирроза печени и гепатоцеллюлярного рака. Разработка новых методов лечения гепатита С и расшифровка механизмов поражения печени при хронических вирусных заболеваниях этого органа является актуальной задачей гепатологии [15].

Известно, что повреждение печени при вирусных гепатитах имеет иммуноопосредованный характер. Иммунная система представляет собой комплекс клеток, взаимодействующих на основе принципов саморегуляции, которые реализуются в значительной мере через медиаторы – цитокины, обладающие широким спектром биологической активности и реализующие адекватный уровень иммунного ответа. На тканевом уровне цитокины ответственны за развитие воспаления, а затем регенерацию тканей. В последние годы активно дискутируется роль цитокинов в патогенезе различных вирусных инфекций, в том числе и при заболеваниях печени вирусного генеза [3]. В проведенных нами ранее исследованиях была доказана роль нескольких вазоактивных цитокинов (васкулоэндотелиального фактора роста, оксида азота, эндотелина-1 и фактора Виллебранда) в патогенезе хронических вирусных гепатитов [10]. В печени под влиянием цитокинов увеличивается синтез острофазовых белков и системы комплемента, нужных для борьбы с вирусом. Сейчас известно уже более 200 индивидуальных веществ, относящихся к семейству цитокинов. В последние

годы появилось новое семейство цитокинов аналогов интерлейкина-17 (ИЛ-17), состоящее из 6 членов [6].

Интерлейкин-17 является провоспалительным цитокином, который связан с запуском механизмов воспаления и активирует Th-17-иммунный ответ, может вырабатываться многими клетками, однако наиболее выраженную продукцию обеспечивают Т-хелперы 17-го типа (Th-17) и гамма-дельта-Т-лимфоциты. Th-17-клетки вовлекаются в иммунный ответ при бактериальном заражении, а также патогенетически связаны с развитием хронических воспалительных заболеваний [5]. Установлено, что важную роль в иммунопатогенезе хронического гепатита С (ХГС) играет изменение баланса клонов Т-лимфоцитовхелперов (Th) 1-го и 2-го типов, которые различаются по спектру вырабатываемых ими цитокинов и роли в стимулировании иммунного ответа по клеточному или гуморальному типу [4]. Основной физиологической функцией ИЛ-17 является защита от инфекции, он запускает обширную тканевую реакцию, приводящую к миграции нейтрофилов в зону воспаления и стимулирует секрецию многих цитокинов [11, 13].

Доказано, что гиперпродукция ИЛ-17 и однонуклеотидные полиморфизмы в ИЛ-17А и ИЛ-17F ассоциированы с развитием ауто-иммунных и ряда аллергических заболеваний, сердечно-сосудистой патологией, раком шейки матки, опухолевыми процессами в желудочно-кишечном тракте. Обнаружена связь между полиморфизмом гена ИЛ-17F и восприимчивостью к туберкулезу [1, 8, 9, 12, 14]. Механизмы реализации действия ИЛ-17 при вирусных заболеваниях печени еще мало изучены.

Внедрение молекулярно-генетических методов исследования показало, что значительное влияние на течение инфекционного процесса оказывает высокая гетерогенность вируса гепатита С. Сегодня генотипирование при ХГС имеет безусловно клиническое значение и является перспективным для решения ряда практических задач [2]. В настоящее время изучение полиморфизма генов регуляторных молекул воспаления приобретает особую актуальность, накапливается все больше данных, свидетельствующих о том, что полиморфизм единичных нуклеотидов (SNP) за счет формирования специфических аллелей генов вносит важный вклад в индивидуальные особенности иммунитета. Знание роли полиморфизма генов регуляторных молекул воспаления в патогенезе многих заболеваний, наряду с достижениями современной геномики, позволяет, с одной стороны, прогнозировать риск развития патологии или тяжесть ее протекания, с другой стороны, подобрать специфическую терапию, включая средства иммунокоррекции, для конкретного пациента [7].

Цель исследования – оценить уровень ИЛ-17 и полиморфизм гена ИЛ-17F (rs763780) у пациентов с хроническим гепатитом С.

Материалы и методы исследования

Обследовано 100 пациентов (в возрасте от 18 до 70 лет, в среднем – 38,3±10,4 г.) с хроническим вирусным гепатитом С в фазе реактивации, проходящих лечение в Пермской краевой инфекционной клинической больнице. В группе с ХГС мужчины составили 48%, женщины – 52%, генотип 1 имели 56% пациентов, а генотип 2 и 3 – 44%. Аналогичная по половому составу контрольная группа включала 50 практически здоровых лиц от 22 до 65 лет (средний возраст – 36,3±7,9 г.), не имеющих заболеваний гепатобилиарной системы.

Для исследования биохимических показателей аланинаминотрансферазы (АЛТ) аспартатаминотрансферазы (АСТ), гамма-глутамилтрансферазы (ГГТ), лактатдегидрогеназы (ЛДГ), общего холестерина (ОХ), триглицеридов (ТГ), липопротеидов высокой плотности (ЛПВП), липопротеидов низкой плотности (ЛПНП) использовали биохимический анализатор Architect-4000 (США). Концентрацию ИЛ-17 в сыворотке крови обследуемых измеряли методом иммуноферментного анализа с использованием одноименного набора ЗАО «Вектор-Бест» (г. Новосибирск) и регистрацией результатов на фотометре Stat-Fax-2100. Для выявления полиморфных вариантов маркера rs763780 гена ИЛ-17F применяли аллель-специфическую ПЦР ЗАО «Синтол» (г. Москва) на амплификаторе Real-time «CFX-96» Bio-Rad Laboratories, Inc. (CIIIA).

Статистическую обработку полученных результатов осуществляли методами вариационной статистики и непараметрических критериев в программе Statistica 6.0. Полученные данные представляли в виде медианы (Me) и 25-го и 75-го перцентиля. Количественная оценка линейной связи между двумя случайными величинами определялась с использованием коэффициента корреляции по Спирмену, связь между двумя дискретными величинами в зависимости от их типа устанавливалась тестом по Пирсену. Различия между выборками считались достоверными при значении для p < 0.05 [1].

Результаты и их обсуждение

При лабораторном обследовании пациентов с ХГС были обнаружены достоверные отклонения биохимических показателей (АЛТ, АСТ, ГГТ, ЛДГ, К де Ритиса), повышение уровня ТГ и ЛПВП, что свидетельствовало о наличие синдромов цитолиза, холестаза и дислипидемии у данной категории больных (табл. 1). Уровень ИЛ-17 в крови пациентов с ХГС достоверно не отличался от тако-

Таблица 1

Биохимические показатели и уровень интерлейкина-17 в сыворотке крови больных ХГС и у практически здоровых лиц, *Me* (25; 75-й перцентиль); (*Min-Max*)

Показатель	Контрольная группа (<i>n</i> =50)	XIC (n=100)	p
АЛТ, Е/л	15,8 (13; 19,1); (5–40)	57 (35; 109); (15–261)	<0,0001
АСТ, Е/л	20,0 (19; 26); (10–42)	36,5 (26; 58); (14–195)	<0,0001
К де Ритиса	1,3 (1,1; 1,57); (0,89–2,2)	0,66 (0,5; 0,89); (0,27-2,3)	<0,0001
ГГТ, Е/л	15,3 (12; 20); (7–45)	30 (20; 56); (9–317)	0,001
ЛДГ, Е/л	274 (237; 344); (125–493)	305 (263; 358); (194–861)	0,04
ОХ, ммоль/л	4,5 (3,9; 5,2); (2,2–5,9)	4,44 (3,8; 5,0); (2,05–6,8)	0,9
ТГ, ммоль/л	0,8 (0,7; 1,1); (0,24–1,82)	1,13 (0,84; 1,58); (0,4–4,0)	0,001
ЛПВП,	1,57 (1,3: 1,7);	1,32 (1,12; 1,68);	0,04
ммоль/л	(0,82-2,09)	(0,41-2,9)	
ЛПНП, ммоль/л	2,81 (2,28; 3,36); (1,2-4,47)	2,59 (2,1; 2,9); (1,16–4,78)	0,32
ИЛ-17, пг/мл	0 (0; 0); (0-0)	0 (0; 0); (0–782)	0,45

 Π р и м е ч а н и е : p – достоверность отличий в сравниваемых группах.

вого в группе контроля, лишь у нескольких пациентов было отмечено значительное повышение этого показателя (см. табл. 1).

При внутригрупповом анализе повышение продукции ИЛ-17 отмечалась у 14% больных ХГС: увеличение данного показателя до 2 норм (1,2–2,4 пг/мл) и до 5 норм (2,4–6 пг/мл) не отмечалось, повышение до 10 норм (6–12 пг/мл) было зарегистрировано у 2%, более 10 норм (более 12 пг/мл) – у 12%. За нормальные концентрации ИЛ-17 в сыворотке крови был принят средний уровень данного показателя, указанный в инструкции одноименного набора фирмой производителем ЗАО «Вектор-Бест» (г. Новосибирск), – 1,2 пг/мл.

В настоящем исследовании мы проанализировали однонуклеотидную замену (SNP)

Таблица 2

Распространенность (%) генотипов и аллелей полиморфизма гена ИЛ-17F (rs763780)

Гоудина	Генотип			Аллель	
Группа	C/C	C/G	G/G	С	G
XTC (n=100)	98	2	-	99	1
Группа контроля (n=50)	100	-	-	100	-

в гене ИЛ-17F (rs763780) у 150 человек (50 доноров без хронических вирусных заболеваний печени и 100 пациентов с ХГС), проживающих на территории Пермского края.

В обеих группах обследованных преобладающим являлся генотип СС, в группе здоровых его распространенность составила 100%, а в группе с ХГС – 98%. Патологические гомозиготы GG в обеих группах отсутствовали. Распространенность гетерозиготы С/G в когорте больных ХГС составила 2%, а в группе контроля этот генотип не был зарегистрирован. Таким образом, не было установлено достоверного отличия частот генотипов в двух когортах (χ^2 =0,70; p=0,71). Соотношение аллелей изучаемого маркера в двух группах также характеризовалось большим сходством (χ^2 =0,69; p=0,41). Преобладающим в обеих группах являлся аллель С, частота которого в группе контроля составила 1,00, а в когорте больных ХГС – 0,99. Патологический минорный аллель G в группе больных ХГС встретился в 1% случаев (табл. 2).

В ходе исследования не было установлено статистически значимого отличия частот генотипов и аллелей маркера rs763780 гена ИЛ-17F между группами здоровых и лиц с ХГС, проживающих на территории Пермского края. Мы также не нашли взаимосвязи между полиморфизмом гена ИЛ-17F (rs763780) и содержанием ИЛ-17 в сыворотке крови.

При проведении корреляционного анализа выявлены достоверные взаимосвязи ИЛ-17 с маркерами цитолиза, холестаза и об-

Таблица 3

Корреляции интерлейкина-17, гена интерлейкина-17F (rs763780) с биохимическими показателями

Показатель	r	p	
ИЛ-17 и АЛТ	-0,35	0,02	
ИЛ-17 и АСТ	-0,34	0,01	
ИЛ-17 и ГТП	-0,22	0,045	
ИЛ-17 и ЛДГ	0,22	0,045	
ИЛ-17 и OX	0,27	0,04	
ИЛ-17 и К де Ритиса	-0,23	0,046	
Ген ИЛ-17F и ОХ	0,19	0,045	
Ген ИЛ-17F и ЛПВП	-0,16	0,04	
Ген ИЛ-17F и ЛПНП	0,18	0,046	

 Π р и м е ч а н и е : r — коэффициент взаимосвязи показателей; p — значимость корреляции.

щим холестерином, что подтверждает участие ИЛ-17 как провоспалительного фактора в патогенезе ХГС (табл. 3). Также в ходе исследования были установлены достоверные прямые взаимосвязи полиморфизма гена ИЛ-17F (rs763780) с содержанием ОХ, ЛПНП и обратная достоверная взаимосвязь с содержанием ЛПВП в сыворотке крови.

Выводы

- 1. В ходе исследования обнаружено повышение продукции интерлейкина-17 у 14% больных ХГС.
- 2. Выявленные достоверные взаимосвязи интерлейкина-17 с маркерами цитолиза, холестаза и общим холестерином подтверждают участие данного провоспалительного цитокина в патогенезе ХГС.
- 3. При анализе не было установлено статистически значимого отличия частот генотипов и аллелей маркера rs763780 гена интерлейкина-17F между группами здоровых и лиц с ХГС.
- 4. Не была найдена взаимосвязь между полиморфизмом гена интерлейкина-17F (rs763780) и содержанием интерлейкина-17 в сыворотке крови. Выявленные закономерности позволяют сделать предварительное

заключение о том, что полиморфизм гена интерлейкина-17F не является информативным при выявлении факторов генетической предрасположенности к развитию воспалительного синдрома и выработке интерлейкина-17 при ХГС.

5. Выявленные достоверные корреляции между полиморфными вариантами гена интерлейкина-17F с показателями липидного обмена позволяют сделать предположение о возможном влиянии полиморфизма гена интерлейкина-17F на механизмы регуляции обменных процессов вышеупомянутых факторов. Следует отметить, что объемы изученных в представленном исследовании групп здоровых индивидуумов и лиц с ХГС не очень большие, и для повышения надежности сделанных статистических заключений требуется проведение дальнейших исследований.

Библиографический список

- 1. Еникеева А.Д., Кутихин А.Г., Южалин А.Е., Волков А.Н. Изучение полиморфизма маркера RS2275913 гена IL17A в группе лиц с онкозаболеваниями желудочно-кишечного тракта и среди здоровых индивидуумов Кемеровской области. Материалы конференции. Кемерово 2012. Сибирский онкологический журнал 2012; Прил. 1: 67.
- 2. Заботина Е. Е. Эпидемиологические и молекулярно-генетические аспекты генотипов В и С: автореф. дис. ... канд. мед. наук. М. 2011; 25.
- Ивашкин В. Т. Механизмы иммунной толерантности и патологии печени. Российский журнал гастроэнтерологии, гепатологии и колопроктологии 2009; 19 (2): 8–13.
- 4. Каплина Н.А., Жукова Е.А., Романова С.В., Маянская И.В., Толкачева Н.И., Коркоташвили Л.В., Грошовкина М.В., Тимченко И.А. Изменения клинических показателей и цитокинового статуса у детей с хро-

- ническими вирусными гепатитами В и С на фоне противовирусной терапии. Цитокины и воспаление 2011: 3: 16–20.
- 5. *Кетлинский С.А., Симбирцев А.С.* Цитокины. М.: Фолиант 2008; 552.
- 6. *Симбирцев А. С.* Цитокины новая система регуляции защитных реакций организма. Цитокины и воспаление 2002; 1: 9–16.
- 7. Симбирцев А.С., Громова А.Ю. Функциональный полиморфизм генов регуляторных молекул воспаления. Цитокины и воспаление 2005; 4 (1): 3–10.
- 8. Соболев В.В., Стародубцева Н.Л., Соболева А.Г., Рахимов О.Ю., Корсунская И.М., Пирузян Э.С., Миннибаев М.Т., Кривощапов Л., Брускин С.А., Воронько О.Е. Роль интерлейкинов в патогенезе псориаза. Современные проблемы дерматовенерологии, иммунологии и врачебной косметологии 2019; 5 (5): 79–84.
- 9. Тугуз А.Р., Муженя Д.В., Анохина Е.Н., Ашканова Т.М., Алдонина Л.Д., Руденко К.А., Кизянов А.Ф. Ассоциция G197 /197A аллелей провоспалительного IL-17A с низкодифференцированной аденокарциномой злокачественных новообразований женских репродуктивных органов в этнических группах населения Республики Адыгея. Вестник Адыгейского государственного университета. Серия 4: Естествен-

- но-математические науки и технические науки 2012; 3: 123–130.
- 10. Щёкотова А. П., Головской Б. В., Булатова И. А., Щёкотова И. В. Материалы научной сессии Пермской государственной медицинской академии им. ак. Е. А. Вагнера. Пермь 2006; 44–45.
- 11. *Korn T., Bettelli E., Oukka M.* Interleukin-22, a T (H) 17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis. An. Rev. Immunol. 2009; 27: 485–517.
- 12. Ocejo-Vinyals J. C., Mateo E. P., Hoz M., Arroyo J. L., Aguero R., Ausin F., Farinas M. The IL-17 G-152A single nucleotide polymorphism is associated with pulmonary tuberculosis in northern Spain. Cytokine 2013; 64: 58–61.
- 13. Roark C. L., Simonian P. L., Fontenot A. P. Gammadelta T cells: an important source of IL-17. Cur. Opin. Immunol. 2008; 20: 353–357.
- 14. *Quan Yi, Zhou B, Wang Y, Duan R, Gao Q, Shi S, Song Y, Zhang L.* Association between IL17 Polymorphisms and Risk of Cervical Cancer in Chinese Women. Clinical and Developmental Immunology 2012, available at: http://dx.doi.org/10.1155/2012/258293.
- 15. Webster D. P., Klenerman P., Collier J., Jeffery K. The development of new treatments for hepatitis C. The Lancet Infectious Diseases 2010; 1: 123–125.

Материал поступил в редакцию 05.12.2013