Effect of Bacterial Strains with Different Ability to Synthesize Auxins and Cytokinins on the Growth and Water Relations of Wheat Plants

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The content of cytokinins, auxins, chlorophyll, transpiration, content and relative content of water, water and osmotic potentials, hydraulic conductivity, morphological parameters of durum wheat (Triticum durum Desf.) plants after the introduction into their rhizosphere of cytokinin-producing strains (Bacillus subtilis IB-22) or auxin-producing (Pseudomonas mandelii IB-Ki14) bacteria was evaluated. The experiments were carried out in laboratory conditions in vessels with agrochernozem at an optimal level of illumination. It was shown that the cytokinin-producing strain stimulated plant growth, accumulation of chlorophyll, and increased transpiration to a greater extent compared to plants treated with the auxin-producing strain. Plants under the influence of the B. subtilis IB-22 strain lost more water during transpiration, while there was no decrease in the level of water content and turgor. It is concluded that “bacterial cytokinins” affect the water metabolism of wheat plants by increasing hydraulic conductivity, and “bacterial auxins” - to a greater extent due to osmotic regulation. A more significant stimulation of plant growth by bacteria of the B. subtilis IB-22 strain is also explained by the ability of cytokinins to influence the chlorophyll content to a greater extent than auxins.

Sobre autores

E. Martynenko

Ufa Institute of Biology, Ufa Federal Research Centre of the RAS

Autor responsável pela correspondência
Email: evmart08@mail.ru
Rússia, prosp. Oktyabrya 69, Ufa 450054

T. Arkhipova

Ufa Institute of Biology, Ufa Federal Research Centre of the RAS

Email: evmart08@mail.ru
Rússia, prosp. Oktyabrya 69, Ufa 450054

Z. Akhtyamova

Ufa Institute of Biology, Ufa Federal Research Centre of the RAS

Email: evmart08@mail.ru
Rússia, prosp. Oktyabrya 69, Ufa 450054

L. Kuz’mina

Ufa Institute of Biology, Ufa Federal Research Centre of the RAS

Email: evmart08@mail.ru
Rússia, prosp. Oktyabrya 69, Ufa 450054

Bibliografia

  1. Dodd I.C., Zinovkina N.Y., Safronova V.I., BelimovA.A. Rhizobacterial mediation of plant hormone status // Ann. Appl. Biol. 2010. V. 157. P. 361-379. https://doi.org/10.1111/j.1744-7348.2010.00439.x
  2. Spaepen S., Vanderleyden J. Auxin and plant-microbe interactions. // Cold Spring Harb. Perspect. Biol. 2011. V. 3(4).
  3. https://doi.org/10.1101/cshperspect.a001438
  4. Shi T-Q., Peng H., Zeng S.-Y., Ji R.-Y., Shi K., Huang H., Ji X.-J. Microbial production of plant. V. Hormones: opportunities and challenges // Bioengineered. 2017. V. 157. P. 124-128. https://doi.org/10.1080/21655979.2016.1212138
  5. Siyar S., Inayat N., Hussain F Plant growth promoting rhizobacteria and plants’ improvement: a mini-review // PSM Biol. Res. 2019. V. 41. P. 1-5.
  6. Kudoyarova G., Arkhipova T., Korshunova T., Bakaeva M., Loginov O., Dodd I. Phytohormone mediation of interactions between plants and non-symbiotic growth promoting bacteria under edaphic stresses // Front. Plant Sci. 2019. V. 10. P. 1368. https://doi.org/10.3389/fpls.2019.01368
  7. Grover M., Madhubala R., Ali S.Z., Yadav S.K., Ven- kateswarlu B. Influence of Bacillus spp. strains on seedling growth and physiological parameters of sorghum under moisture stress conditions // J. Basic Microbiol. V. 54. P. 951-961. https://doi.org/10.1002/jobm.201300250
  8. Mohanty P., Singh P., Chakraborty D., Mishra. S, Pattnaik R. Insight into the role of PGPR in sustainable agriculture and environment // Front. Sustain. Food Syst. 2021. V. 5. P. 667150. https://doi.org/10.3389/fsufs.2021.667150
  9. Архипова Т.Н., Веселов С.Ю., Мелентьев А.И., Мартыненко Е.В., Кудоярова Г.Р. Сравнение действия штаммов бактерий, различающихся по способности синтезировать цитокинины, на рост и содержание цитокининов в растениях пшеницы // Физиология растений. 2006. Т. 53. № 4. С. 567-573.
  10. Кузьмина Л.Ю., Высоцкая Л.Б., Галимзянова Н.Ф., Гильванова Е.В., Рябова А.С., Мелентьев А.И. Новые штаммы фосфатмобилизующих бактерий, продуцирующих ауксин, перспективные для сельскохозяйственной биотехнологии // Изв. УНЦ РАН. 2015. № 1. С. 40-46.
  11. Кузьмина Л.Ю., Архипова Т.Н., Актуганов Г.Э., Галимзянова Н.Ф., Четвериков С.П., Мелентьев А.И. Бактерии родов Advenella, Bacillus и Pseudomonas - перспективная основа биопрепаратов для растениеводства // Биомика. 2018. Т. 10. № 1. С. 16-19. https://doi.org/10.31301/2221-6197.bmcs.2018-47
  12. King E.O., Ward M.K., Raney D.E. Two simple media for the demonstration of pyocyanin and fluorescein // Lab. Clin. Med. 1954. V. 44. P. 301-307.
  13. Габбасова И.М., Гарипов Т.Т., Галимзянова Н.Ф., Сулейманов Р.Р., Комиссаров М.А., Сидорова Л.В., Гималетдинова Г.А. Использование удобрения на основе сплавины для повышения плодородия эродированного чернозема типичного // Агрохимия. 2014. № 6. С. 35-42.
  14. Bunce J.A., Ziska L.H. Decreased hydraulic conductance in plants at elevated carbon dioxide. // Plant Cell Environ. 1998. V. 21. P. 121-126.
  15. Veselov S.Yu., Kudoyarova G.R., Egutkin N.L., Gyuli- Zade V.G., Mustafina A.R., Kof E.K. Modified solvent partitioning scheme providing increased specificity and rapidity of immunoassay for indole 3-acetic acid // Physiol. Plantarum. 1992. V. 86. P. 93-96.
  16. Arkhipova T.N., Evseeva N.V., Tkachenko O.V, Burygin G.L., Vysotskaya L.B., Akhtyamova Z.A., Kudoyarova G.R. Effect of rhizobacteria on phytohormone status of potato microclones under osmotic stress in vitro // Biomolecules. 2020. V. 10. P. 1231.
  17. Веселов С.Ю. Использование антител для количественного определения, очистки и локализации регуляторов роста растений // Уфа: Изд-во БГУ, 1998. 138 с.
  18. Werner T., Motyka V, Laucou V, Smets R., Oneckelen H.V, Schmülling TH. Cytokinin-deficient transgenic Arabi-dopsis plants show multiple developemental alterations idicating opposite functions of cytokininsin the regulation of shoot and meristem activity // Plant Cell. 2003. V. 15. P. 2532-2550.
  19. Contesto C., Milesi S., Mantelin S., Zancarini A., Desbrosses G., Varoquaux F, Bellini C., Kowalczyk M., Touraine B. The auxin-signaling pathway is required for the lateral root response of Arabidopsis to the rhizobac- terium Phyllobacterium brassicacearum // Planta. 2010. V. 232. P. 1455-1470.
  20. Davies WJ., Kudoyarova G., Hartung W. Long-distance ABA signaling and its relation to other signaling pathways in the detection of soil drying and the mediation of the plant’s response to drought // J. Plant Growth Regul. 2005. V. 24. № 4. P. 285-295
  21. Brouwer R. The regulating influence of transpiration and suction tension on the water and salt uptake by the roots of intact Vicia faba plants // Acta Bot. Neerl. 1954. V. 3. P. 264-312.
  22. Steudle E. Water uptake by roots: effects of water deficit // J. Exp. Bot. 2000. V. 51. P. 1531-1542. https://doi.org/10.1093/jexbot/51.350.1531
  23. Kudoyarova G., Veselova S., Hartung W., Farhutdinov R., Veselov D., Sharipova G. Involvement of root ABA and hydraulic conductivity in the control of water relations in wheat plants exposed to increased evaporative demand // Planta. 2011. V. 233(1). P. 87-94. https://doi.org/10.1007/s00425-010-1286-7
  24. Marulanda A., Azcon R., Chaumont F., Ruiz-Lozano J. M., Aroca R. Regulation of plasma membrane aquaporins by inoculation with a Bacillus megaterium strain in maize (Zea mays L.) plants under unstressed and salt-stressed conditions // Planta. 2010. V. 232. P. 533-543. https://doi.org/10.1007/s00425-010-1196-8
  25. Cortleven A., Schmülling T. Regulation of chloroplast development and function by cytokinin // J. Exp. Bot. 2015. V. 66(16). P. 4999-5013. https://doi.org/10.1093/jxb/erv132

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © The Russian Academy of Sciences, 2023