Endophytic Strains of Bacillus thuringiensis for the Development of Means to Control the Number of the Colorado Potato Beetle in Potato Crops
- Authors: Sorokan A.V.1, Benkovskaya G.V.1, Mardanshin I.S.2, Alekseev V.Y.1, Rumyantsev S.D.1, Maksimov I.V.1
-
Affiliations:
- Institute of Biochemistry and Genetics – Subdivision of the Ufa Federal Research Centre of the RAS
- Bashkir Institute of Agriculture – Subdivision of the Ufa Federal Research Center of the RAS
- Issue: No 7 (2023)
- Pages: 55-63
- Section: Experimental Articles. Agroecology
- URL: https://permmedjournal.ru/0002-1881/article/view/647069
- DOI: https://doi.org/10.31857/S0002188123050083
- EDN: https://elibrary.ru/USIKJG
- ID: 647069
Cite item
Abstract
Currently, the search for B. thuringiensis strains to be used as biological control agents is based on their toxicity to insects in laboratory tests. At the same time, a number of strains of these bacteria are able to exist in symbiotic relationships with host plants, including being endophytes. The ability of B. thuringiensis strains to penetrate into the internal tissues of plants was evaluated by counting colony-forming units (CFU) of microorganisms 7 days after inoculation of sterile potato plants in test tubes; insecticidal activity was tested on larvae of the 3rd age obtained from overwintered adults of the Colorado beetle collected from fields in the Chishminsky and Iglinsky districts of Bashkortostan. It was shown that the strain of B. thuringiensis B-5351, which inhabits the surface (50.01 ± 8.10 CFU × 105/g) and internal tissues (38.92 ± 9.62 CFU × 105/g) of plant shoots, but has less insecticidal activity than the strain B. thuringiensis B-5689, which exhibits high insecticidal activity and colonizes mainly plant roots (25.37 ± 3.82 CFU × 105/g), reduced colonization of potato crops by the Colorado potato beetle, and also increased the yield of tubers in a 2-year experiment (2020–2021). Under the influence of B. thuringiensis B-5351, a decrease in the number of larvae of early age was observed, in contrast to B. thuringiensis B-5689, which caused longer metamorphosis processes. Apparently, the effect of B. thuringiensis B-5351 was the death of insects. It is important that processing B. thuringiensis B-5351 contributed to a significant decrease in the number of late-instar larvae on crops treated with this strain, as well as the degree of defoliation of plants by the pest, which was not observed with the action of B. thuringiensis B-5689. On plots treated with B. thuringiensis B-5351, the yield of commercial tubers and the total yield increased. A method is proposed for studying the endophytic potential of strains in relation to the terrestrial part of plants to search for biocontrol agents as a basis for creating algorithms for constructing microbiomes in agrocenoses.
About the authors
A. V. Sorokan
Institute of Biochemistry and Genetics – Subdivision of the Ufa Federal Research Centre of the RAS
Author for correspondence.
Email: fourtyanns@googlemail.com
Russia, 450054, Ufa, prosp. Oktyabrya 71
G. V. Benkovskaya
Institute of Biochemistry and Genetics – Subdivision of the Ufa Federal Research Centre of the RAS
Email: fourtyanns@googlemail.com
Russia, 450054, Ufa, prosp. Oktyabrya 71
I. S. Mardanshin
Bashkir Institute of Agriculture – Subdivision of the Ufa Federal Research Center of the RAS
Email: fourtyanns@googlemail.com
Russia, 450059, Ufa, ul. Richarda Sorge 19
V. Yu. Alekseev
Institute of Biochemistry and Genetics – Subdivision of the Ufa Federal Research Centre of the RAS
Email: fourtyanns@googlemail.com
Russia, 450054, Ufa, prosp. Oktyabrya 71
S. D. Rumyantsev
Institute of Biochemistry and Genetics – Subdivision of the Ufa Federal Research Centre of the RAS
Email: fourtyanns@googlemail.com
Russia, 450054, Ufa, prosp. Oktyabrya 71
I. V. Maksimov
Institute of Biochemistry and Genetics – Subdivision of the Ufa Federal Research Centre of the RAS
Email: fourtyanns@googlemail.com
Russia, 450054, Ufa, prosp. Oktyabrya 71
References
- Clements J., Olson J.M., Sanchez-Sedillo B., Bradford B., Groves R.L. Changes in emergence phenology, fatty acid composition, and xenobiotic metabolizing enzyme expression is associated with increased insecticide resistance in the Colorado potato beetle // Arch. Insect Biochem. Physiol. 2020. V. 103. e21630. https://doi.org/10.1002/arch.21630
- Benkovskaya G.V., Udalov M.B., Chusnutdinova E.K. Change in the polymorphism level in populations of the Colorado potato beetle // Rus. J. Genet. Appl. Res. 2010. V. 1 (5). P. 390–395. https://doi.org/10.1134/S2079059711050157
- Kitaev K.A., Mardanshin I.S., Surina E.V., Leontieva T.L., Udalov M.B., Benkovskaya G.V. Modeling genetic processes underlying the development of resistance to fipronil in the populations of Colorado potato beetle (Leptinotarsa decemlineata Say) // Rus. J. Genet. Appl. Res. 2017. V. 7. P. 36–45. https://doi.org/10.1134/S2079059717010063
- Rondon S.I., Feldman M., Thompson A., Oppedisano T., Shrestha G. Identifying resistance to the colorado potato beetle (Leptinotarsa decemlineata Say) in potato germplasm: Review update // Front. Agron. 2021. V. 3. e642189. https://doi.org/10.3389/fagro.2021.642189
- Kadoić-Balaško M., Mikac K.M., Bažok R., Lemic D. Modern techniques in colorado potato beetle (Leptinotarsa decemlineata Say) control and resistance management: history review and future perspectives // Insects. 2020. V. 11. P. 581–593. https://doi.org/10.3390/insects11090581
- Jouzani G.S., Valijanian E., Sharafi R. Bacillus thurin-giensis: a successful insecticide with new environmental features and tidings // Appl. Microbiol. Biotechnol. 2017. V. 101 (7). P. 2691–2711. https://doi.org/10.1007/s00253-017-8175-y
- Güney G., Cedden D., Hänniger S., Heckel D.G., Coutu C., Hegedus D.D., Mutlu D.A., Suludere Z., Sezen K., Güney E., Toprak U. Silencing of an ABC transporter, but not a cadherin, decreases the susceptibility of Colorado potato beetle larvae to Bacillus thuringiensis ssp. tenebrionis Cry3Aa toxin // Arch. Insect Biochem. Physiol. 2021. V. 108 (2). e21834. https://doi.org/10.1002/arch.21834
- Jalali E., Maghsoudi S., Noroozian E. Ultraviolet protection of Bacillus thuringiensis through microencapsulation with Pickering emulsion method // Sci. Rep. 2020. V. 10. e20633. https://doi.org/10.1038/s41598-020-77721-8
- de Almeida J.R., Bonatelli M.L., Batista B.D., Teixeira-Silva N.S., Mondin M., dos Santos R.C., Bento J.M.S., de Almeida Hayashibara C.A., Azevedo J.L., Quecine M.C. Bacillus thuringiensis RZ2MS9, a tropical plant growth-promoting rhizobacterium, colonizes maize endophytically and alters the plant’s production of volatile organic compounds during co-inoculation with Azospirillum brasilense Ab-V5 // Environ. Microbiol. Rep. 2021. V. 13. P. 812–821. https://doi.org/10.1111/1758-2229.13004
- Максимов И.В., Максимова Т.И., Сарварова Е.Р., Благова Д.К. Эндофитные бактерии как агенты для биопестицидов нового поколения // Прикл. биохим. и микробиол. 2018. Т. 54. № 2. С. 134–148. https://doi.org/10.7868/S0555109918020034
- Sorokan A., Benkovskaya G., Burkhanova G., Blagov, D., Maksimov I. Endophytic strain Bacillus subtilis 26DCryChS producing Cry1Ia toxin from Bacillus thuringiensis promotes multifaceted potato defense against Phytophthora infestans (Mont.) de Bary and pest Leptinotarsa decemlineata Say // Plants. 2020. V. 9. e1115. https://doi.org/10.3390/plants9091115
- Онина С.А., Козлова Г.Г., Минина Н.Н., Панчихина Е.В., Усманов С.М. Исследование аналитических показателей почвы города Бирска и Бирского района Республики Башкортостан // Усп. совр. естествознания. 2018. № 6. С. 13–18.
- Gassmann A.J. Resistance to Bt maize by western corn rootworm: effects of pest biology, the pest-crop interaction and the agricultural landscape on resistance // Insects. 2021. V. 12. A. 136. https://doi.org/10.3390/insects12020136
- García-Suárez R., Verduzco-Rosas L.A., Ibarra J.E. Isolation and characterization of two highly insecticidal, endophytic strains of Bacillus thuringiensis // FEMS Microbiol. Ecol. 2021. V. 97. fiab080. https://doi.org/10.1093/femsec/fiab080
- Kandel S.L., Joubert P.M., Doty S.L. Bacterial endophyte colonization and distribution within plants // Microorganisms. 2017. V. 25. P. 77–91. https://doi.org/10.3390/microorganisms5040077
- Azizoglu U. Bacillus thuringiensis as a biofertilizer and biostimulator: a mini-review of the little-known plant growth-promoting properties of Bt // Curr. Microbiol. 2019. V. 76. P. 1379–1385. https://doi.org/10.1007/s00284-019-01705-9
- Laznik Ž., Tóth T., Lakatos T. Control of the Colorado potato beetle (Leptinotarsa decemlineata [Say]) on potato under field conditions: a comparison of the efficacy of foliar application of two strains of Steinernema feltiae (Filipjev) and spraying with thiametoxam // J. Plant Dis. Prot. 2010. V. 117. P. 129–135. https://doi.org/10.1007/BF03356348
- Maltsev S.V. Efficiency of ethylene application on seed potato tubers // Sel’skokhozyaistvennaya Biol. 2021. V. 56. P. 44–53. https://doi.org/10.15389/agrobiology.2021.1.44eng
Supplementary files
