Method of chorioidea area extraction and its quantitative analysis on optical coherence tomography images for diagnostics of eye diseases2
- Autores: Demin N.S.1,2, Ilyasova N.Y.1,2, Samigullin R.Т.1
-
Afiliações:
- NRC “Kurchatov Institute”
- Samara National Research University
- Edição: Nº 3 (2024)
- Páginas: 150-156
- Seção: РАСПОЗНАВАНИЕ ОБРАЗОВ И ОБРАБОТКА ИЗОБРАЖЕНИЙ
- URL: https://permmedjournal.ru/0002-3388/article/view/676421
- DOI: https://doi.org/10.31857/S0002338824030172
- EDN: https://elibrary.ru/UPHZSO
- ID: 676421
Citar
Resumo
The paper proposes a technology for extraction of vascular tissue of the human eye and calculation of chorioidal vascular index on optical coherence tomography images. The applied approach is based on the use of the method of shadow compensation of optical coherence tomography (OCT) images with their subsequent filtering and binarisation. The technology made it possible to automate the calculation of chorioidal vascular index value, which is an important indicator in the study of the vascular layer when diagnosing eye diseases.
Sobre autores
N. Demin
NRC “Kurchatov Institute”; Samara National Research University
Autor responsável pela correspondência
Email: volfgunus@gmail.com
Image Processing Systems Institute
Rússia, Samara; SamaraN. Ilyasova
NRC “Kurchatov Institute”; Samara National Research University
Email: ilyasova.nata@gmail.com
Image Processing Systems Institute
Rússia, Samara; SamaraR. Samigullin
NRC “Kurchatov Institute”
Email: samigullin.ravil2015@yandex.ru
Image Processing Systems Institute
Rússia, SamaraBibliografia
- Шагалова П.А., Ерофеева А.Д., Орлова М.М. и др. Исследование алгоритмов предобработки изображений для повышения эффективности распознавания медицинских снимков// Тр. НГТУ им. Р.Е. Алексеева. 2020. № 1 (128). С. 25–32.
- Medeiros F.A., Jammal A.A., Thompson A.C. From Machine to Machine: an OCT-trained Deep Learning Algorithm for Objective Quantification of Glaucomatous Damage in Fundus Photographs //Ophthalmology. 2019. № 126(4). P. 513–521.
- An G., Omodaka K., Hashimoto K. et al. Glaucoma Diagnosis with Machine Learning Based on Optical Coherence Tomography and Color Fundus Images // Healthcare Engineering. 2019. № 2019.
- Copete S., Flores-Moreno I., Montero J.A., Duker J.S., Ruiz-Moreno J.M. Direct Comparison of Spectral-Domain and Swept-Source OCT in the Measurement of Choroidal Thickness in Normal Eyes // British J. of Ophthalmology. 2014. № 98 (3). P. 334–338.
- Ng W.Y., Ting D.S.W., Agrawal R. et al. Choroidal Structural Changes in Myopic Choroidal Neovascularization After Treatment with Antivascular Endothelial Growth Factor Over 1 Year // Investig. Ophthalmol. Vis. Sci. 2016. № 57. P. 4933–4939.
- Kuroda Y., Ooto S., Yamashiro K. et. al. Increased Choroidal Vascularity in Central Serous Chorioretinopathy Quantified Using Swept-Source Optical Coherence Tomography // American J. Ophthalmology. 2016. № 169. P. 199–207.
- Vupparaboina K.K., Dansingani K.K., Goud A. et al. Quantitative Shadow Compensated Optical Coherence Tomography of Choroidal Vasculature // Scientific Reports. 2018. № 8 (6461).
- Singh S.R., Vupparaboina K. K., Goud A. et. al. Choroidal Imaging Biomarker // Surv. Ophthalmol. 2019. № 64. P. 312–333.
- Park Y., Cho K.J. Choroidal Vascular Index in Patients with Open Angle Glaucoma and Preperimetric Glaucoma // PLoS ONE. 2019. № 14 (3).
- Ozcaliskan S., Balci S., Yenerel N.M. Choroidal Vascularity Index Determined by Binarization of Enhanced Depth Imaging Optical Coherence Tomography Images in Eyes with Intermediate Age-Related Mascular Degeneratiob // European J. Ophtalmology. 2020. № 30 (6). P. 1512–1518.
- Agrawal R., Wei X., Goud A., Vupparaboina K.K., Jana S., Chhablani J. Influence of Scanning Area on Choroidal Vascularity Index Measurement Using Optical Coherence Tomography // Acta Ophthalmol. 2017. № 95. P. 770–775.
- Wei X., Mishra C., Kannan N. B. et al. Choroidal Structural Analysis and Vascularity Index in Retinal Dystrophies // Acta Ophthalmol. 2019. № 97 (1). P. 116–121.
- Gora M., Karnowski K., Szkulmowski M. et. al. Ultra High-speed Swept Source OCT Imaging of the Anterior Segment of Human Eye at 200 kHz with Adjustable Imaging Range // Optics Express. 2009. № 17. P. 14880–4894.
- Betzler B.K., Ding J., Wei X. et al. Choroidal Vascularity Index: a Step Towards Software as a Medical Device // British J. Ophthalmology. 2022. № 106. P. 149–155.
- Agrawal R., Salman M., Tan K. A. et al. Choroidal Vascularity Index (CVI)-A Novel Optical Coherence Tomography Parameter for Monitoring Patients with Panuveitis? // PLoS One. 2016. № 11 (1). P. e0146344.
- Girard M.J., Strouthidis N.G., Ethier C.R., Mari J.M. Shadow Removal and Contrast Enhancement in Optical Coherence Tomography Images of the Human Optic Nerve Head // Investigative Ophthalmology & Visual Science. 2011. № 58. P. 7738–7748.
- Cheong H., Devalla S. K., Chuangsuwanich T. et. al. OCT-GAN: Single Step Shadow and Noise Removal From Optical Coherence Tomography Images of the Human Optic Nerve Head // Biomedical Optics Express. 2021. № 12. P. 1482–1498.
- Shin Y.U., Lee S.E., Kang M.H., Han S.W., Yi J.H., Cho H. Evaluation of Changes in Choroidal Thickness and the Choroidal Vascularity Index After Hemodialysis in Patients with End-stage Renal Disease by Using Swept-Source Optical Coherence Tomography // Med. (Baltim.). 2019. № 98.
- Jia Y., Tan O., Tokayer J. et al. Split-spectrum Amplitude-decorrelation Angiography with Optical Coherence Tomography // Optics Express. 2012. № 20. P. 4710–4725.
- Zhang M., Hwang T. S., Campbell J. P. et al. Projection-resolved Optical Coherence Tomographic Angiography // Biomedical Optics Express. 2016. № 7. P. 816–828.
- Tan K.A., Gupta P., Agarwal A. et al. State of Science: Choroidal Thickness and Systemic Health // Surv. Ophthalmol. 2016. № 61. P. 566–581.
- Pellegrini M., Giannaccare G., Bernabei F. et. al. Choroidal Vascular Changes in Arteritic and Nonarteritic Anterior Ischemic Optic Neuropathy // American J. Ophthalmol. 2019. № 205. P. 43–49.
- Betzler B.K., Ding J., Wei X. et al. Choroidal Vascularity Index: a Step Towards Software as a Medical Device // British J. of Ophthalmology. 2022. № 106. P. 149–155.
- Iovino C., Pellegrini M., Bernabei F. et al. Choroidal Vascularity Index: An In-Depth Analysis of This Novel Optical Coherence Tomography Parameter // J. Clin. Med. 2020. № 9 (2).
- Laviers H., Zambarakji H. Enhanced Depth Imaging-OCT of the Choroid: a Review of the Current Literature // Graefe’s Arch. Clin. Exp. Ophthalmol. 2014. № 252 (12). P. 1871–1883.
- Agrawal R., Ding J., Sen P. Exploring Choroidal Angioarchitecture in Health and Disease Using Choroidal Vascularity Index // Progress in Retinal and Eye Research. 2020. № 77(100829).
- Sezer T., Altınışık M., Koytak İ.A., Özdemir M.H. The Choroid and Optical Coherence Tomography // Turk. Oftalmoloiji Derg. 2016. № 46. P. 30–37.
Arquivos suplementares
