Rotation of the Milky Way halo in the solar neighborhood based on GAIA DR3 catalog

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The rotation of the Milky Way halo in the solar neighborhood is investigated using kinematic data from the GAIA DR3 catalog for RR Lyrae variable stars with parallax errors of less than 20%. Two criteria were used for selecting halo stars — kinematic and spatial. In both approaches, we confirm the existence of weak rotation of the halo in the direction opposite to the rotation of the Galactic disk with velocities of 4.08 ± 2.19 km/s for the kinematic criterion and 9.49 ± 2.59 km/s for the spatial criterion.

Full Text

Restricted Access

About the authors

R. V. Tkachenko

Southern Federal University

Author for correspondence.
Email: rtkachenko@sfedu.ru

Institute of Physics

Russian Federation, Rostov-on-Don

A. P. Bryndina

Southern Federal University

Email: rtkachenko@sfedu.ru

Institute of Physics

Russian Federation, Rostov-on-Don

A. В. Zhmailova

Southern Federal University

Email: rtkachenko@sfedu.ru

Institute of Physics

Russian Federation, Rostov-on-Don

V. I. Korchagin

Southern Federal University

Email: rtkachenko@sfedu.ru

Institute of Physics

Russian Federation, Rostov-on-Don

References

  1. O. J. Eggen, D. Lynden-Bell, and A. R. Sandage, 136, 748 (1962).
  2. L. Searle and R. Zinn, 225, 357 (1978).
  3. V. Belokurov, D. B. Zucker, N. W. Evans, G. Gilmore, et al., 642(2), L137 (2006), arXiv:astro-ph/0605025.
  4. A. Helmi, S. D. M. White, P. T. de Zeeuw, and H. Zhao, Nature 402(6757), 53 (1999), arXiv:astro-ph/9911041.
  5. A. Helmi, C. Babusiaux, H. H. Koppelman, D. Massari, J. Veljanoski, and A. G. A. Brown, Nature 563(7729), 85 (2018), arXiv:1806.06038 [astro-ph.GA].
  6. R. E. Sanderson, A. Helmi, and D. W. Hogg, 801(2), id. 98 (2015), arXiv:1404.6534 [astro-ph.GA].
  7. E. Athanassoula, R. E. G. Machado, and S. A. Rodionov, Monthly Not. Roy. Astron. Soc. 429(3), 1949 (2013), arXiv:1211.6754 [astro-ph.CO].
  8. N. D. Utkin, A. K. Dambis, A. S. Rastorguev, A. D. Klinchev, I. Ablimit, and G. Zhao, Astron. Letters 44(11), 688 (2018).
  9. H. Tian, C. Liu, Y. Xu, and X. Xue, 871(2), id. 184 (2019), arXiv:1805.08326 [astro-ph.GA].
  10. G. Iorio and V. Belokurov, Monthly Not. Roy. Astron. Soc. 502(4), 5686 (2021), arXiv:2008.02280 [astroph.GA].
  11. D. Carollo, T. C. Beers, Y. S. Lee, M. Chiba, et al., Nature 450(7172), 1020 (2007), arXiv:0706.3005 [astro-ph].
  12. G. Liu, Y. Huang, S. A. Bird, H. Zhang, F. Wang, and H. Tian, Monthly Not. Roy. Astron. Soc. 517(2), 2787 (2022), arXiv:2209.07885 [astro-ph.GA].
  13. V. Ripepi, G. Clementini, R. Molinaro, S. Leccia, et al., Astron. and Astrophys. 674, id. A17 (2023), arXiv:2206.06212 [astro-ph.SR].
  14. M. Taylor, arXiv:1707.02160 [astro-ph.IM] (2017).
  15. L. Lindegren, J. Hernández, A. Bombrun, S. Klioner, et al., Astron. and Astrophys. 616, id. A2 (2018), arXiv:1804.09366 [astro-ph.IM].
  16. T. P. Robitaille, E. J. Tollerud, P. Greenfield, M. Droettboom, et al., Astron. and Astrophys. 558, id. A33 (2013), arXiv:1307.6212 [astro-ph.IM].
  17. R. Abuter, A. Amorim, N. Anugu, M. Bauböck, et al., Astron. and Astrophys. 615, id. L15 (2018), arXiv:1807.09409 [astro-ph.GA].
  18. R. Drimmel and E. Poggio, Res. Notes Amer. Astron. Soc. 2(4), id. 210 (2018).
  19. M. Bennett and J. Bovy, Monthly Not. Roy. Astron. Soc. 482(1), 1417 (2019), arXiv:1809.03507 [astro-ph.GA].
  20. J. Bovy, Astrophys. J. Suppl. 216(2), id. 29 (2015), arXiv:1412.3451 [astro-ph.GA].
  21. P. J. McMillan, Monthly Not. Roy. Astron. Soc. 465(1), 76 (2017), arXiv:1608.00971 [astro-ph.GA].
  22. R. Tkachenko, V. Korchagin, A. Jmailova, G. Carraro, and B. Jmailov, Galaxies 11(1), id. 26 (2023), arXiv:2303.05603 [astro-ph.GA].
  23. K. Vieira, G. Carraro, V. Korchagin, A. Lutsenko, T. M. Girard, and W. van Altena, 932(1), id. 28 (2022), arXiv:2205.00590 [astro-ph.GA].
  24. V. Korchagin, A. Lutsenko, R. Tkachenko, G. Carraro, and K. Vieira, Galaxies 11(5), id. 97 (2023), arXiv:2310.10327 [astro-ph.GA].
  25. S. Khrapov, A. Khoperskov, and V. Korchagin, Galaxies 9(2), id. 29 (2021), arXiv:2105.03198 [astro-ph.GA].
  26. M. Jurić, Ž. Ivezić, A. Brooks, R. H. Lupton, et al., 673(2), 864 (2008), arXiv:astro-ph/0510520.
  27. N. Tahir, F. De Paolis, A. Qadir, and A. A. Nucita, Symmetry 15(1), id. 160 (2023), arXiv:2301.03249 [astro-ph.GA].

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Distribution of stars in the galactic coordinate system (l, b), where longitude l = 0 and latitude b = 0 correspond to the position of the galactic center. The scale on the right shows the heliocentric distances of objects d.

Download (376KB)
3. Fig. 2. Top row: distribution of RR Lyrae stars in (x, y) and (x, z) spaces. Middle row: histograms of the (d, ∆N) and (Vφ, ∆N) distributions. Bottom: distributions of stars in (Vφ, Vz) and (Lz, E) spaces. The vertical dotted lines separate objects with prograde and retrograde rotation.

Download (603KB)
4. Fig. 3. Histogram of the distribution of rotational velocity of halo stars and the distribution of halo stars in space (Lz, E), selected according to kinematic (upper row) and spatial (lower row) criteria.

Download (294KB)
5. Fig. 4. Kinematic characteristics of stars selected by kinematic (left column) and spatial (right column) criteria. The distributions of pericenters rperi (upper row), apocenters rapo (middle row) and eccentricities e of stars (lower row) are shown.

Download (287KB)

Copyright (c) 2024 The Russian Academy of Sciences