ВЛИЯНИЕ БРОМИСТОГО ЭТИДИЯ НА ПУРИНЕРГИЧЕСКУЮ МОДУЛЯЦИЮ МИОНЕВРАЛЬНОЙ ПЕРЕДАЧИ И СОКРАЩЕНИЯ СКЕЛЕТНОЙ МЫШЦЫ

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Исследована проблема изменений мионевральной передачи в присутствии интеркалирующего агента — бромистого этидия, обладающего известным угнетающим действием на нервно-мышечную передачу, природа которого остается до конца невыясненной. Для решения вопроса о возможном участии в этом процессе известных модуляторов синаптической передачи — пуринов (АТФ и аденозина) — нами проведена оценка их эффектов в присутствии данного агента. После выдерживания нервно-мышечного препарата лягушки в перфузирующем растворе, содержащем бромистый этидий, амплитуда постсинаптических ответов и сила сокращения мышцы снижались. В данных условиях оба пурина дополнительно оказывали свое обычное подавляющее действие как на амплитуду постсинаптических ответов, так и на силу сокращения скелетной мышцы. Таким образом, угнетающий эффект бромистого этидия на нервно-мышечную передачу не связан с усилением им ингибирующего действия эндогенных пуринов, вызванного квантовым выходом нейротрансмиттера.

Об авторах

А. Н Горшунова

Казанский юридический институт МВД России

Казань, Россия

А. Ю Теплов

Казанский государственный медицинский университет

Казань, Россия

С. Н Гришин

Казанский государственный медицинский университет

Казань, Россия

Р. Д Мухамедзянов

Казанский государственный медицинский университет

Казань, Россия

А. Е Хайруллин

Казанский государственный медицинский университет; Казанский федеральный университет

Email: khajrulli@ya.ru
Казань, Россия

Список литературы

  1. Sigmon J. and Larcom L. L. The effect of ethidium bromide on mobility of DNA fragments in agarose gel electrophoresis. Electrophoresis, 17 (10), 1524—1527 (1996). doi: 10.1002/elps.1150171003
  2. Перечень химических и биологических веществ, прошедших государственную регистрацию. Токсикологич. вестн., 1 (142), 48 (2007).
  3. Liu J., Li X., and Ke A. High-mobility group box-1 induces mechanical pain hypersensitivity through astrocytic connexin 43 via the toll-like receptor-4/JNK signaling pathway. Synapse, 75 (2), e22184 (2020). doi: 10.1002/syn.22184
  4. Dong R., Han Y., Jiang L., Liu S., Zhang F., Peng L., Wang Z., Ma Z., Xia T., and Gu X. Connexin 43 gap junction-mediated astrocytic network reconstruction attenuates isoflurane-induced cognitive dysfunction in mice. J. Neuroinflammation, 19 (1), 64 (2022). doi: 10.1186/s12974-022-02424-y
  5. Komatsu K., Uchida K., and Satoh S. Neurotrophic influences are not affected by miniature end-plate potentials. Exp. Neurol., 83 (1), 33—41 (1984). doi: 10.1016/0014-4886(84)90043-8
  6. Smith K. J., Felts P. A., and John G. R. Effects of 4-ami-nopyridine on demyelinated axons, synapses and muscle tension. Brain, 123 (1), 171-184 (2000). doi: 10.1093/brain/123.1.171
  7. Sterz R., Hermes M., Peper K., and Bradley R. J. Effects of ethidium bromide on the nicotinic acetylcholine receptor. Eur. J. Pharmacol., 80 (4), 393-399 (1982). doi: 10.1016/0014-2999(82)90085-1
  8. Dreyer F., Peper K., Sterz R., Bradley R. J., and Müller K.
  9. D. Drug-receptor interaction at the frog neuromuscular junction. Prog. Brain Res., 49, 213-223 (1979). doi: 10.1016/S0079-6123(08)64635-X
  10. Peper K., Bradley R. J., and Dreyer F. The acetylcholine receptor at the neuromuscular junction. Physiol. Rev., 62 (4), 1271-1340 (1982). doi: 10.1152/physrev.1982.62.4.1271
  11. Dreyer F., Peper K., and Sterz R. Determination of doseresponse curves by quantitative ionophoresis at the frog neuromuscular junction. J. Physiol., 281, 395-419 (1978). doi: 10.1113/jphysiol.1978.sp012430
  12. Bostock H., Sherratt R. M., and Sears T. A. Overcoming conduction failure in demyelinated nerve fibres by prolonging action potentials. Nature, 274 (5669), 385-387 (1978). doi: 10.1038/274385a0
  13. Sherratt R., Bostock H., and Sears T. Effects of 4-amino-pyridine on normal and demyelinated mammalian nerve fibres. Nature, 283, 570-572 (1980). doi: 10.1038/283570a0
  14. Bostock H., Sears T. A., and Sherratt R. M. The effects of 4-aminopyridine and tetraethylammonium ions on normal and demyelinated mammalian nerve fibres. J. Physiol., 313, 301-315 (1981) doi: 10.1113/jphysiol.1981.sp013666
  15. Hansebout R. R., Blight A. R., Fawcett S., and Reddy K. 4-Aminopyridine in chronic spinal cord injury: a controlled, double-blind, crossover study in eight patients. J. Neurotrauma, 10 (1), 1-18 (1993). doi: 10.1089/neu.1993.10.1
  16. Hayes K. C., Blight A. R., Potter P. J., Allatt R. D., Hsieh J. T., Wolfe D. L., Lam S., and Hamilton J. T. Pre-clinical trial of 4-aminopyridine in patients with chronic spinal cord injury. Paraplegia, 31 (4), 216-224 (1993). doi: 10.1038/sc.1993.40
  17. Hansebout R. R., Blight A. R., Fawcett S., and Reddy K. 4-Aminopyridine in chronic spinal cord injury: a controlled, double-blind, crossover study in eight patients. J. Neurotrauma, 10 (1), 1-18 (1993). doi: 10.1089/neu.1993.10.1
  18. Grishin S., Shakirzyanova A., Giniatullin A., Afzalov R., and Giniatullin R. Mechanisms of ATP action on motor nerve terminals at the frog neuromuscular junction. Eur. J. Neurosci., 21 (5), 1271-1279 (2005). doi: 10.1111/j.1460-9568.2005.03976.x
  19. Burnstock G., Knight G. E., and Greig A. V. Purinergic signaling in healthy and diseased skin. J. Invest. Dermatol., 132 (3), 526-546 (2012). doi: 10.1038/jid.2011.344
  20. Burnstock G. Purines and sensory nerves. Handb. Exp. Pharmacol., 194, 333-392 (2009). doi: 10.1007/978-3-540-79090-7_10
  21. Khairullin A. E., Grishin S. N., and Ziganshin A. U. Pre-synaptic purinergic modulation of the rat neuro-muscular transmission. Curr. Issu. Mol. Biol., 45, 8492-8501 (2023). doi: 10.3390/cimb45100535
  22. Bravo D. T., Kolmakova N. G., and Parsons S. M. New transport assay demonstrates vesicular acetylcholine transporter has many alternative substrates. Neurochem. Int., 47 (4), 243-247 (2005). doi: 10.1016/j.neuint.2005.05.002
  23. Khairullin A. E., Teplov A. Y., Grishin S. N., and Ziganshin A. U. ATP causes contraction of denervated skeletal muscles. Biochemistry (Moscow) — Suppl. Ser. A: Membr. Cell. Biol., 17 (1), 73-77 (2023). doi: 10.1134/s1990747823060065

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2024