ГЕНЕТИЧЕСКИЙ АНАЛИЗ АРКТИЧЕСКИХ ПОПУЛЯЦИЙ БЕЛОГО МЕДВЕДЯ С ИСПОЛЬЗОВАНИЕМ ИСТОРИЧЕСКИХ ОБРАЗЦОВ

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Впервые проведен анализ генетических данных с использованием ДНК белого медведя, выделенной из музейных образцов, находящихся в коллекции Зоологического института РАН. Уникальные данные, полученные в ходе анализа, позволили впервые охарактеризовать структуру популяций в различных регионах и тем самым заложить основу для дальнейших исследований. Впервые были применены методы выделения ДНК из исторического материала, разработанные для использования в археологии. Данные методы позволили получить материал высокого качества, пригодный для высокопроизводительного секвенирования. Анализ генетических вариантов дал возможность впервые описать структуру популяций белого медведя в российских арктических регионах и ее изменения, связанные с активной хозяйственной деятельностью, развернувшейся в первой трети ХХ века.

Об авторах

А. А Канапин

Санкт-Петербургский политехнический университет Петра Великого

Санкт-Петербург, Россия

А. А Самсонова

Санкт-Петербургский политехнический университет Петра Великого

Санкт-Петербург, Россия

А. В Абрамов

Зоологический институт РАН

Санкт-Петербург, Россия

М. В Саблин

Зоологический институт РАН

Санкт-Петербург, Россия

В. В Платонов

Зоологический институт РАН

МСанкт-Петербург, Россия

Х. Х Мустафин

Московский физико-технический институт

Долгопрудный, Россия

С. А Чекрыгин

Санкт-Петербургский государственный университет

Санкт-Петербург, Россия

Д. Хирата

Санкт-Петербургский политехнический университет Петра Великого

Email: dhirata59@gmail.com
Санкт-Петербур, Россия

Список литературы

  1. Supple M. A. and Shapiro B. Conservation of biodiversity in the genomics era. Genome Biol., 19, 131 (2018). doi: 10.1186/s13059-018-1520-3
  2. Theissinger K., Fernandes C., Formenti G., Bista I., Berg P. R., Bleidorn C., Bombarely A., Crottini A., Gallo G. R., Godoy J. A., Jentoft S., Malukiewicz J., Mouton A., Oomen R. A., Paez S., Palsb0ll P. J., Pampoulie Ch., Ruiz-López M. J., Secomandi S., Svardal H., Theofanopoulou C., de Vries J., Waldvogel A.-M., Zhang G., Jarvis E. D., Bálint M., Ciofi C., Waterhouse R. M., C Mazzoni. J., and Höglund J. How genomics can help biodiversity conservation. Trends Genet., 39, 545-559 (2023). doi: 10.1016/j.tig.2023.01.005
  3. Schmidt T. L., Thia J. A., and Hoffmann A. A. How can genomics help or hinder wildlife conservation? Annu Rev. Anim. Biosci., 12, 45-68 (2024). doi: 10.1146/annurev-animal-021022-051810
  4. Miller W., Schuster S. C., Welch A. J., Ratan A., Bedoya-Reina O. C., Zhao F., Kim H. L., Burhans R. C., Drautz D. I., Wittekindt N. E., Tomsho L. P., Ibarra-Laclette E., Herrera-Estrella L., Peacock E., Farley S., Sage G. K., Rode K., Obbard M., Montiel R., Bachmann L., Ingólfsson Ó., Aars J., Mailund Th., Wiig 0., Talbot S. L., and Lindqvist Ch. Polar and brown bear genomes reveal ancient admixture and demographic footprints of past climate change. Proc. Natl. Acad. Sci. USA, 109 (36), E2382-E2390 (2012). doi: 10.1073/pnas.1210506109
  5. Cahill J. A., Green R. E., Fulton T. L., Stiller M., Jay F., Ovsyanikov N., Salamzade R., St John J., Stirling I., Slatkin M., and Shapiro B. Genomic evidence for island population conversion resolves conflicting theories of polar bear evolution. PLoS Genet., 9, e1003345 (2013). doi: 10.1371/journal.pgen.1003345
  6. Liu S., Lorenzen E. D., Fumagalli M., Li B., Harris K., Xiong Z., Zhou L., Korneliussen T. S., Somel M., Babbitt C., Wray G., Li J., He W., Wang Zh., Fu W., Xiang X., Morgan C. C. Doherty A., O’Connell M. J., McInerney J. O., Born E. W., Dalén L., Dietz R., Orlando L., Sonne Ch., Zhang G., Nielsen R., Willerslev E., and Wang J. Population Genomics reveal recent speciation and rapid evolutionary adaptation in polar bears. Cell, 157, 785-794 (2014). doi: 10.1016/j.cell.2014.03.054
  7. Jensen E. L., Tschritter C., de Groot P. V. C., Hayward K. M., Branigan M., Dyck M., Clemente-Carvalho R. B. G., and Lougheed S. C. Canadian polar bear population structure using genome-wide markers. Ecol. Evol., 10, 3706-3714 (2020). doi: 10.1002/ece3.6159
  8. Laidre K. L., Supple M. A., Born E. W., Regehr E. V., Wiig Ø., Ugarte F., Aars J., Dietz R., Sonne C., Hegelund P., Isaksen C., Akse G. B., Cohen B. H., Stern. L., Moon T., Vollmers Ch., Corbett-Detig R., Paetkau D., and Shapiro B. Glacial ice supports a distinct and undocumented polar bear subpopulation persisting in late 21st-century sea-ice conditions. Science, 376, 13331338 (2022). doi: 10.1126/science.abk2793
  9. Lan T., Leppälä K., Tomlin C., Talbot S. L., Sage G. K., Farley S. D., Shideler R. T., Bachmann L., Wiig Ø., AlbertV. A., Salojärvi J., Mailund Th., Drautz-Moses D. I., Schuster S. C., Herrera-Estrella L., and Lindqvist Ch. Insights into bear evolution from a Pleistocene polar bear genome. Proc. Natl. Acad. Sci. USA, 119, e2200016119 (2022). doi: 10.1073/pnas.2200016119
  10. Wang M.-S., Murray G. G. R., Mann D., Groves P., Vershinina A. O., Supple M. A., Kapp J. D., Corbett-Detig R., Crump S. E., Stirling I., Laidre K. L., Kunz M., Dalén L., Green R. E., and Shapiro B. A polar bear paleogenome reveals extensive ancient gene flow from polar bears into brown bears. Nature Ecol. Evol., 6, 936-944 (2022). doi: 10.1038/s41559-022-01753-8
  11. Peacock E., Sonsthagen S. A., Obbard M. E., Boltunov A., Regehr E. V., Ovsyanikov N., Aars J., Atkinson S. N., Sage G. K., Hope A. G., E. Zeyl, L. Bachmann, D. Ehrich, K. T. Scribner, S. C. Amstrup, S. Belikov, E. W. Born, A. E. Derocher, I. Stirling, M. K. Taylor, Ø. Wiig, D. Paetkau, and Talbot S. L. Implications of the circumpolar genetic structure of polar bears for their conservation in a rapidly warming Arctic. PLoS One, 10, e112021 (2015). doi: 10.1371/journal.pone.0112021
  12. Malenfant R. M., Davis C. S., Cullingham C. I., and Coltman D. W. Circumpolar genetic structure and recent gene flow of polar bears: a reanalysis. PLoS One, 11, e0148967 (2016). doi: 10.1371/journal.pone.0148967
  13. Sorokin P. A., Zvychaynaya E. Y., Ivanov E. A., Mizin I. A., Mordvintsev I. N., Platonov N. G., Isachenko A. I., Lazareva R. E., and Rozhnov V. V. Population genetic structure in polar bears (Ursus maritimus) from the Russian Arctic Seas. Russ. J. Genet., 59, 1320-1332 (2023). doi: 10.1134/S1022795423120128
  14. Johnson K. R. and Owens I. F. P. A global approach for natural history museum collections. Science, 379, 11921194 (2023). doi: 10.1126/science.adf6434
  15. Orlando L., Allaby R., Skoglund P., Der Sarkissian C., Stockhammer P. W., Ávila-Arcos M. C., Fu Q., Krause J., Willerslev E., Stone A. C., and Warinner Ch. Ancient DNA analysis. Nature Rev. Methods Primers, 1, 14 (2021). doi: 10.1038/s43586-020-00011-0
  16. Díez-Del-Molino D., Sánchez-Barreiro F., Barnes I., Gilbert M. T. P., and Dalén L. Quantifying temporal genomic erosion in endangered species. Trends Ecol. Evol., 33, 176-185 (2018). doi: 10.1016/j.tree.2017.12.002
  17. Card D. C., Shapiro B., Giribet G., Moritz C., and Edwards S. V. Museum genomics. Annu. Rev. Genet., 55, 633-659 (2021). doi: 10.1146/annurev-genet-071719-020506
  18. Raxworthy C. J. and Smith B. T. Mining museums for historical DNA: advances and challenges in museomics. Trends Ecol. Evol., 36, 1049-1060 (2021). doi: 10.1016/j.tree.2021.07.009
  19. Benham P. M. and Bowie R. C. K. Natural history collections as a resource for conservation genomics: Understanding the past to preserve the future. J. Hered., 114, 367-384 (2023). doi: 10.1093/jhered/esac066
  20. Dabney J., Knapp M., Glocke I., Gansauge M.-T., Weihmann A., Nickel B., Valdiosera C., García N., Pääbo S., Arsuaga J.-L., and Meyer M. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc. Natl. Acad. Sci. USA, 110, 15758-15763 (2013). doi: 10.1073/pnas.1314445110
  21. Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv, 1303.3997 [q-bio.GN] (2013). Available from: http://arxiv.org/abs/1303.3997.
  22. Korneliussen T. S., Albrechtsen A., and Nielsen R. ANGSD: Analysis of next generation sequencing data. BMC Bioinformatics, 15, 356 (2014). doi: 10.1186/s12859-014-0356-4

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2024