Особенности структуры и свойства поверхности стабильной аустенитной стали, подвергнутой жидкостной цементации при пониженной температуре

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Исследованы структура, химический и фазовый состав, микротвердость и шероховатость поверхности жаропрочной хромоникелевой (в мас. %: 24.27 Cr; 18.81 Ni) аустенитной стали, подвергнутой жидкостной цементации при температуре 780°С. Установлено, что микроструктура цементованного слоя преимущественно состоит из обогащенного углеродом аустенита (γ-фазы), карбида хрома Cr7C3 и цементита Fe3C. Выявлено, что карбиды выделяются как по границам, так и внутри аустенитных зерен, причем по мере удаления от поверхности стали количество и дисперсность внутризеренных карбидов уменьшается. Установлено также, что жидкостная цементация приводит к повышению микротвердости поверхности стали от 200 до 590 HV0.025. Общая глубина упрочнения составила около 200 мкм, при этом упрочненный слой является градиентным. Поверхность цементованной стали характеризуется большей шероховатостью (Ra = 2.40 мкм, Rz = 17.60 мкм) по сравнению с электрополированной поверхностью образцов до цементации (Ra = 0.17 мкм и Rz = 1.80 мкм), что обусловлено влиянием ряда факторов, в частности, окислением поверхности.

Об авторах

Р. А. Саврай

Институт машиноведения им. Э.С. Горкунова УрО РАН

Автор, ответственный за переписку.
Email: ras@imach.uran.ru
Россия, ул. Комсомольская, 34, Екатеринбург, 620049

П. А. Скорынина

Институт машиноведения им. Э.С. Горкунова УрО РАН

Email: ras@imach.uran.ru
Россия, ул. Комсомольская, 34, Екатеринбург, 620049

Ю. М. Колобылин

Институт машиноведения им. Э.С. Горкунова УрО РАН

Email: ras@imach.uran.ru
Россия, ул. Комсомольская, 34, Екатеринбург, 620049

Список литературы

  1. Материаловедение: Учебник для высших технических учебных заведений / Под общ. ред. Б.Н. Арзамасова. М.: Машиностроение, 1986. 384 с.
  2. Tavares S.S.M., Moura V., da Costa V.C., Ferreira M.L.R., Pardal J.M. Microstructural changes and corrosion resistance of AISI 310S steel exposed to 600–800°C // Mater. Charact. 2009. V. 60. P. 573–578.
  3. Pardal J.M., Carvalho S.S., Barbosa C., Montenegro T.R., Tavares S.S.M. Failure analysis of AISI 310S plate in an inert gas generator used in off-shore oil platform // Eng. Fail. Anal. 2011. V. 18. P. 1435–1444.
  4. Gojic M., Nagode A., Kosec B., Kozuh S., Šavli Š., Holjevac-Grguric T., Kosec L. Failure of steel pipes for hot air supply // Eng. Fail. Anal. 2011. V. 18. P. 2330–2335.
  5. Kosec L., Šavli Š., Kozuh S., Holjevac-Grguric T., Nagode A., Kosec G., Drazic G., Gojic M. Transformation of austenite during isothermal annealing at 600–900°C for heat-resistant stainless steel // J. Alloys Compd. 2013. V. 567. P. 59–64.
  6. Lim T.-H., Hwang E.R., Ha H.Y., Nam S.W., Oh I.-H., Hong S.-A. Effects of temperature and partial pressure of CO2/O2 on corrosion behaviour of stainless-steel in molten Li/Na carbonate salt // J. Power Sources. 2000. V. 89. P. 1–6.
  7. Ni C.S., Lu L.Y., Zeng C.L., Niu Y. Electrochemical impedance studies of the initial-stage corrosion of 310S stainless steel beneath thin film of molten (0.62Li, 0.38K)2CO3 at 650°C // Corros. Sci. 2011. V. 53. P. 1018–1024.
  8. Qiana J., Chena Ch., Yua H., Liu F., Yang H., Zhang Zh. The influence and the mechanism of the precipitate/austenite interfacial C-enrichment on the intergranular corrosion sensitivity in 310S stainless steel // Corros. Sci. 2016. V. 111. P. 352–361.
  9. Wang W., Guan B., Li X., Lu J., Ding J. Corrosion behavior and mechanism of austenitic stainless steels in a new quaternary molten salt for concentrating solar power // Sol. Energy Mater. Sol. Cells. 2019. V. 194. P. 36–46.
  10. Yu Zh., Liu Zh., Ye F., Ramadini C., Xia L. The degradation mechanism of 304, 310S, 316L and 321 stainless steels in E-scrap smelting slag // Corros. Sci. 2022. V. 197. Art. 110098.
  11. Ulmer D.G., Altstetter C.J. Hydrogen-induced strain localization and failure of austenitic stainless steels at high hydrogen concentrations // Acta Metall. Mater. 1991. V. 39. No. 6. P. 1237–1248.
  12. Lai C.L., Tsay L.W., Chen C. Effect of microstructure on hydrogen embrittlement of various stainless steels // Mater. Sci. Eng. A. 2013. V. 584. P. 14–20.
  13. Chen T.C., Chen S.T., Tsay L.W. The role of induced α′-martensite on the hydrogen-assisted fatigue crack growth of austenitic stainless steels // Int. J. Hydrogen Energy. 2014. V. 39. P. 10293–10302.
  14. Neuharth J.J., Cavalli M.N. Investigation of high-temperature hydrogen embrittlement of sensitized austenitic stainless steels // Eng. Fail. Anal. 2015. V. 49. P. 49–56.
  15. Mohapatra J.N., Kulkarni R., Kumar D.S., Balachandran G. Failure analysis of areal gas distribution skirt plate // Eng. Fail. Anal. 2022. V. 131. Art. 105885.
  16. Safari A.R., Forouzan M.R., Shamanian M. Hot cracking in stainless steel 310s, numerical study and experimental verification // Comput. Mater. Sci. 2012. V. 63. P. 182–190.
  17. Almomani A., Mourad A.-H.I., Barsoum I. Effect of sulfur, phosphorus, silicon, and delta ferrite on weld solidification cracking of AISI 310S austenitic stainless steel // Eng. Fail. Anal. 2022. V. 139. Art. 106488.
  18. Kimura M., Ichihara A., Kusaka M., Kaizu K. Joint properties and their improvement of AISI 310S austenitic stainless steel thin walled circular pipe friction welded joint // Mater. Des. 2012. V. 38. P. 38–46.
  19. Mortezaie A., Shamanian M. An assessment of microstructure, mechanical properties and corrosion resistance of dissimilar welds between Inconel 718 and 310S austenitic stainless steel // Int. J. Press. Vessel. Pip. 2014. V. 116. P. 37–46.
  20. Zhang C., Neu R.W. Temperature-frequency wear mechanism maps for a heat-resistant austenitic stainless steel // Wear. 2023. V. 522. Art. 204844.
  21. Добротворский А.М., Гюлиханданов Е.Л., Масликова Е.И. Деградация структуры и свойств труб из теплостойких сталей после длительной эксплуатации на нефтеперерабатывающих предприятиях // Научно-технические ведомости СПбГТУ. 2016. № 1 (238). С. 136–144.
  22. Кузнецов В.П., Макаров А.В., Осинцева А.Л., Юровских А.С., Саврай Р.А., Роговая С.А., Киряков А.Е. Упрочнение и повышение качества поверхности деталей из аустенитной нержавеющей стали алмазным выглаживанием на токарно-фрезерном центре // Упрочняющие технологии и покрытия. 2011. № 11. С. 16–26.
  23. Макаров А.В., Скорынина П.А., Осинцева А.Л., Юровских А.С., Саврай Р.А. Повышение трибологических свойств аустенитной стали 12Х18Н10Т наноструктурирующей фрикционной обработкой // Обработка металлов (технология, оборудование, инструменты). 2015. № 4 (69). С. 80–92.
  24. Savrai R.A., Makarov A.V., Malygina I.Yu., Rogovaya S.A., Osintseva A.L. Improving the strength of the AISI 321 austenitic stainless steel by frictional treatment [Electronic resource] // Diagnostics, Resource and Mechanics of materials and structures. 2017. Is. 5. P. 43–62. URL: http://dream-journal.org/issues/2017-5/2017-5_149.html
  25. Наркевич Н.А., Шулепов И.А., Миронов И.П. Структура, механические и триботехнические свойства аустенитной азотистой стали после фрикционной обработки // ФММ. 2017. Т. 118. № 4. С. 421–428.
  26. Макаров А.В., Скорынина П.А., Юровских А.С., Осинцева А.Л. Влияние технологических условий наноструктурирующей фрикционной обработки на структурно-фазовое состояние и упрочнение метастабильной аустенитной стали // ФММ. 2017. Т. 118. № 12. С. 1300–1311.
  27. Cao Y., Ernst F., Michal G.M. Colossal carbon supersaturation in austenitic stainless steels carburized at low temperature // Acta Mater. 2003. V. 51. P. 4171–4181.
  28. Silva I.C., Rebello J.M.A., Bruno A.C., Jacques P.J., Nysten B., Dille J. Structural and magnetic characterization of a carburized cast austenitic steel // Scripta Mater. 2008. V. 59. P. 1010–1013.
  29. Fernandes F.A.P., Gallego L.C.C.J. Microstructure of nitrided and nitrocarburized layers produced on a superaustenitic stainless steel // J. Mater. Sci. Technol. 2008. V. 2. Is. 2. P. 158–164.
  30. Ceschini L., Chiavari C., Marconi A., Martini C. Influence of the countermaterial on the dry sliding friction and wear behaviour of low temperature carburized AISI316L steel // Tribol. Int. 2013. V. 67. P. 36–43.
  31. Макаров А.В., Гаврилов Н.В., Самойлова Г.В., Мамаев А.С., Осинцева А.Л., Саврай Р.А. Влияние непрерывного и газоциклического плазменного азотирования на качество наноструктурированной поверхности аустенитной нержавеющей стали // Обработка металлов (технология, оборудование, инструменты). 2017. № 2 (75). С. 55–66.
  32. Саврай Р.А., Скорынина П.А., Макаров А.В., Меньшаков А.И., Гавико В.С. Влияние фрикционной обработки и низкотемпературной плазменной цементации на структуру и фазовый состав метастабильной аустенитной стали // ФММ. 2023. Т. 124. № 5. С. 409–416.
  33. Саврай Р.А., Скорынина П.А., Макаров А.В., Коган Л.Х., Меньшаков А.И. Влияние фрикционной обработки и низкотемпературной плазменной цементации на микротвердость и электромагнитные характеристики метастабильной аустенитной стали // ФММ. 2023. Т. 124. № 8. С. 748–755.
  34. Savrai R.A., Skorynina P.A. Structural-phase transformations and changes in the properties of AISI 321 stainless steel induced by liquid carburizing at low temperature // Surf. Coat. Technol. 2022. V. 443. Art. 128613.
  35. Чиркова А.Г., Рубцов А.В., Арсланова А.И., Гафарова В.А., Кузеев И.Р. Силицирование высоколегированной стали из твердой фазы // Нефтегазовое дело. 2019. Т. 17. № 4. С. 93–99.
  36. Konovalov S., Ivanov Yu., Gromov V., Panchenko I. Fatigue-induced evolution of AISI 310S steel microstructure after electron beam treatment // Materials. 2020. V. 13. Is. 20. Art. 4567.
  37. Sun J., Tang H., Wang C., Han Z., Li S. Effects of alloying elements and microstructure on stainless steel corrosion: a review // Steel Res. Int. 2022. V. 93. Is. 5. Art. 2100450. P. 1–19.
  38. Kadowaki M., Saengdeejing A., Muto I., Chen Y., Masuda H., Katayama H., Doi T., Kawano K., Miura H., Sugawara Y., Hara N. First-principles analysis of the inhibitive effect of interstitial carbon on an active dissolution of martensitic steel // Corros. Sci. 2020. V. 163. Art. 108251. P. 1–11.
  39. Toraya H. A new method for quantitative phase analysis: Direct derivation of weight fractions from observed intensities and chemical composition data of individual crystalline phases // Rigaku Journal. 2018. V. 34. Is. 1. P. 3–8.
  40. Kim B., Celada C., San Martín D., Sourmail T., Rivera-Díaz-del-Castillo P.E.J. The effect of silicon on the nanoprecipitation of cementite // Acta Mater. 2013. V. 61. Is. 18. P. 6983–6992.
  41. Arh B., Tehovnik F., Vode F. Transformation of the δ-ferrite in SS2343 austenitic stainless steel upon annealing at 1050°C, 1150°C and 1250°C // Metals. 2021. V. 11. Is. 6. Art. 935.
  42. Gigović-Gekic A., Avdusinovic H., Hodžić A., Mandžuka E. Effect of temperature and time on decomposition of δ-ferrite in austenitic stainless steel // Materials and Geoenvironment. 2020. V. 67. Is. 2. P. 65–71.
  43. Mateša B., Samardžić I., Dunđer M. The influence of the heat treatment on delta ferrite transformation in austenitic stainless steel welds // Metalurgija. 2012. V. 51. Is. 2. P. 229–232.
  44. Borgioli F. From austenitic stainless steel to expanded austenite-S phase: formation, characteristics and properties of an elusive metastable phase // Metals. 2020. V. 10. Is. 2. Art. 187.
  45. Maistro G., Nyborg L., Vezzu S., Cao Y. Microstructural characterization and layer stability oflow-temperature carburized AISI 304L and AISI 904L austenitic stainless steel // Metall. Ital. 2015. Is. 11–12. P. 21–30.
  46. Саврай Р.А., Скорынина П.А., Макаров А.В., Осинцева А.Л. Особенности структуры и свойства поверхности метастабильной аустенитной стали, подвергнутой жидкостной цементации при пониженной температуре // ФММ. 2020. Т. 121. № 1. С. 72–78.
  47. Kegg G.R., Silcock J.M. The effect of nickel on the precipitation of chromium carbide in austenite // Metal Science Journal. 1972. V. 6. Is. 1. P. 47–56.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML