Spatial Distribution of the Eddy Diffusion Coefficient in the Plasma Sheet of Earth’s Magnetotail and its Dependence on the Interplanetary Magnetic Field and Geomagnetic Activity based on MMS Satellite Data
- Authors: Naiko D.Y.1,2, Ovchinnikov I.L.1, Antonova E.E.1,3
-
Affiliations:
- Skobeltsyn Institute of Nuclear Physics, Moscow State University
- Moscow State University
- Space Research Institute, Russian Academy of Sciences
- Issue: Vol 64, No 2 (2024)
- Pages: 199-207
- Section: Articles
- URL: https://permmedjournal.ru/0016-7940/article/view/650939
- DOI: https://doi.org/10.31857/S0016794024020032
- EDN: https://elibrary.ru/DZKPRA
- ID: 650939
Cite item
Abstract
The article presents the results of a statistical analysis of the distribution of the eddy diffusion coef-ficient depending on the coordinates in the plasma sheet of Earth’s magnetosphere based on data from the Magnetospheric Multiscale Mission satellite system (MMS) for the period from 2017 to 2022. The localization of satellites inside the plasma sheet was recorded from the concentration and temperature of plasma ions according to the data of the same instruments and the value of plasma parameter β. Significant anisotropy of the eddy diffusion coefficient was revealed. The dependence of the eddy diffusion coefficient on the inter-planetary magnetic field is analyzed, showing that with the southern orientation of the interplanetary magnetic field, the eddy diffusion coefficients are 1.5–2 times greater than with the northern orientation. It is also shown that under disturbed geomagnetic conditions (SML < –200 nT), the eddy diffusion coefficients are several times greater than under quiet geomagnetic conditions (SML > –50 nT).
Full Text

About the authors
D. Yu. Naiko
Skobeltsyn Institute of Nuclear Physics, Moscow State University; Moscow State University
Author for correspondence.
Email: daniilnaiko@mail.ru
Department of Physics
Russian Federation, Moscow; MoscowI. L. Ovchinnikov
Skobeltsyn Institute of Nuclear Physics, Moscow State University
Email: ilya@psn.ru
Russian Federation, Moscow
E. E. Antonova
Skobeltsyn Institute of Nuclear Physics, Moscow State University; Space Research Institute, Russian Academy of Sciences
Email: elizaveta.antonova@gmail.com
Russian Federation, Moscow; Moscow
References
- Антонова Е.Е. О неадиабатической диффузии, выравнивании концентрации и температуры в плазменном слое магнитосферы Земли // Геомагнетизм и аэрономия. 1985. Т. 25. № 4. С. 623—627.
- Антонова Е.Е., Воробьев В.Г., Кирпичев И.П., Ягодкина О.И. Сравнение распределения давления плазмы в экваториальной плоскости и на малых высотах в магнитоспокойных условиях // Геомагнетизм и аэрономия. 2014. Т. 54. № 3. С. 300—303. https://doi.org/10.7868/S001679401403002X
- Антонова Е.Е., Овчинников И.Л. Равновесие турбулентного токового слоя и токовый слой хвоста магнитосферы Земли // Геомагнетизм и аэрономия. 1996. Т. 36. № 5. С. 7—14.
- Ермолаев Ю.И., Петрукович А.А., Зеленый Л.М., Антонова Е.Е., Овчинников И.Л., Сергеев В.А. Исследования структуры и динамики плазменного слоя в эксперименте Коралл проекта Интербол // Космич. исслед. 2000. Т. 38. № 1. С. 16—22.
- Овчинников И.Л., Антонова Е.Е., Ермолаев Ю.И. Определение коэффициента турбулентной диффузии в плазменном слое по данным проекта ИНТЕРБОЛ // Космич. исслед. 2000. Т. 38. № 6. С. 596—601.
- Овчинников И.Л., Антонова Е.Е., Ермолаев Ю.И. Турбулентность в плазменном слое во время суббурь (Исследование ряда случаев на базе наблюдений хвостового зонда проекта ИНТЕРБОЛ) // Космич. исслед. 2002. Т. 40. № 6. С. 563—570.
- Овчинников И.Л., Антонова Е.Е., Найко Д.Ю. Флуктуации электрического и магнитного полей в плазменном слое хвоста магнитосферы Земли по данным MMS // Космич. исслед. 2024. Т. 62. № 1. Принято к печати.
- Angelopoulos V., Kennel C.F., Coroniti F.V., Pellat R., Spence H.E., Kivelson M.G., Walker R.J., Baumjohann W., Feldman W.C., Gosling J.T. Characteristics of ion flow in the quiet state of the inner plasma sheet // Geophys. Res. Lett. 1993. V. 20. № 16. P. 1711—1714. https://doi.org/10.1029/93GL00847
- Angelopoulos V., Mukai T., Kokubun S. Evidence for intermittency in Earths plasma sheet and implications for selforganized criticality // Phys. Plasmas. 1999. V. 6. № 11. P. 4161—4168. https://doi.org/10.1063/1.873681
- Antonova E.E., Kirpichev I.P., Stepanova M.V. Plasma pressure distribution in the surrounding the Earth plasma ring and its role in the magnetospheric dynamics // J. Atmos. Solar-Terr. Phys. 2014. V. 115. № 8. P. 32—40. https://doi.org/10.1016/j.jastp.2013.12.005
- Antonova E.E., Kirpichev I.P., Vovchenko V.V., Stepanova M.V., Riazantseva M.O., Pulinets M.S., Ovchinnikov I.L., Znatkova S.S. Characteristics of plasma ring, surrounding the Earth at geocentric distances ~7—10 RE, and magnetospheric current systems // J. Atmos. Solar-Terr. Phys. 2013. V. 99. № 7. P. 85—91. https://doi.org/10.1016/j.jastp.2012.08.013
- Antonova E.E., Ovchinnikov I.L. Magnetostatically equilibrated plasma sheet with developed medium-scale turbulence: structure and implications for substorm dynamics // J. Geophys. Res. 1999. V. 104. P. 17289—17297. https://doi.org/10.1029/1999JA900141
- Antonova E.E., Stepanova M.V., The impact of turbulence on physics of the geomag-netic tail // Front. Astron. Space Sci. V. 8: 622570. 2001. https://doi.org/10.3389/fspas.2021.622570
- Antonova E.E., Vorobjev V.G., Kirpichev I.P., Yagodkina O.I., Stepanova M.V. Problems with mapping the auroral oval and magnetospheric substorms // Earth Planets and Space. 2015. V. 67. https://doi.org/10.1186/s40623-015-0336-6
- Borovsky J.E., Elphic R.C., Funsten H.O., Thomsen M.F. The Earth’s plasma sheet as a laboratory for turbulence in high-β MHD // J. Plasma Phys. 1997. V. 57. № 1. P. 1—34. https://doi.org/10.1017/S0022377896005259
- Borovsky J.E., Funsten H.E. MHD turbulence in the Earth’s plasma sheet: Dynamics, dissipation and driving // J. Geophys. Res. 2003. V. 107. № A7. https://doi.org/10.1029/2002JA009625
- Borovsky J.E., Thomsen M.F., Elphic R.C. The driving of the plasma sheet by the solar wind // J. Geophys. Res. 1998. V. 103. № A8. P. 17617—17639. https://doi.org/10.1029/97JA02986
- Burch J.L., Moore T.E., Torbert R.B., Giles B.L. Magnetospheric Multiscale overview and science objectives // Space Sci. Rev. 2016. V. 199. P. 5—21. https://doi.org/10.1007/s11214-015-0164-9
- Ergun R.E., Goodrich K.A., Wilder F.D., et al. Magnetic reconnection, turbulence, and particle acceleration: Observations in the Earth’s magnetotail // Geophys. Res. Lett. 2018. V. 45. P. 3338—3347. https://doi.org/10.1002/2018GL076993
- Eyelade A.V., Espinoza C.M., Stepanova M., Antonova E.E., Ovchinnikov I.L., Kirpichev I.P. Influence of MHD turbulence on ion kappa distributions in the Earth’s plasma sheet as a function of plasma β parameter // Front. Astron. Space Sci. V. 8: 647121. 2021. https://doi.org/10.3389/fspas.2021.647121
- Montgomery D. Remarks on the MHD problem of generic magnetospheres and magnetotails. Magnetotail Physics. Ed. A.T.Y. Lui. 1987. P. 203—204. Baltimore, Md.: Johns Hopkins University Press, 1987.
- Nagata D., Machida S., Ohtani S., Saito Y., Mukai T. Solar wind control of plasma number density in the nearEarth plasma sheet: three-dimensional structure // Ann. Geophysicae. 2008. V. 26. № 12. P. 4031—4049. https://doi.org/10.5194/angeo-26-4031-2008
- Ovchinnikov I.L., Antonova E.E., Yermolaev Yu.I. Plasma sheet heating during substorm and the values of the plasma sheet diffusion coefficient obtained on the base of Interball/Tail probe observations // Adv. Space Res. 2002. V. 30. № 7. P. 1821—1824. https://doi.org/10.1016/S0273-1177(02)00456-8
- Pinto V., Stepanova M., Antonova E.E., Valdivia J.A. Estimation of the eddy-diffusion coefficients in the plasma sheet using THEMIS satellite data // J. Atmos. Solar-Terr. Phys. 2011. V. 73. № 7. P. 1472—1477. https://doi.org/10.1016/j.jastp.2011.05.007
- Pollock C., Moore T., Jacques A., et al. Fast Plasma Investigation for Magnetospheric Multiscale // Space Sci. Rev. 2016. V. 199. P. 331—406. https://doi.org/10.1007/s11214-016-0245-4
- Stepanova M., Antonova E.E., Paredes-Davis D., Ovchinnikov I.L., Yermolaev Y.I. Spatial variation of eddy-diffusion coefficients in the turbulent plasma sheet during substorms // Ann. Geophysicae. 2009. V. 27. № 4. P. 1407—1411. https://doi.org/10.5194/angeo-27-1407-2009
- Stepanova M., Antonova E.E. Modeling of the turbulent plasma sheet during quiet geomagnetic conditions // J. Atmos. Solar-Terr. Phys. 2011. V. 73. № 8. P. 1636—1642. https://doi.org/10.1016/j.jastp.2011.02.009
- Stepanova M., Pinto V., Valdivia J.A., Antonova E.E. Spatial distribution of the eddy diffusion coefficients in the plasma sheet during quiet time and substorms from THEMIS satellite data // J. Geophys. Res. 2011. V. 116. № 1. https://doi.org/10.1029/2010JA015887
- Stepanova M.V., Vucina-Parga T., Antonova E.E., Ovchinnikov I.L., Yermolaev Yu.I. Variation of the plasma turbulence in the central plasma sheet during substorm phases observed by the Interball/tail satellite // J. Atmos. Solar-Terr. Phys. 2005. V. 67. № 11. P. 1815—1820. https://doi.org/10.1016/j.jastp.2005.01.013
- Torbert R.B., Russell C.T., Magnes W., et al. The FIELDS Instrument Suite on MMS: Scientific Objectives, Measurements, and Data Products // Space Sci. Rev. 2016. V. 199. P. 105—135. https://doi.org/10.1007/s11214-014-0109-8
- Troshichev O.A., Antonova E.E., Kamide Y. Inconsistence of magnetic field and plasma velocity variations in the distant plasma sheet: violation of the “frozen-in” criterion? // Adv. Space Res. 2002. V. 30. № 12. P. 2683—2687. https://doi.org/10.1016/S0273-1177(02)80382-9
- Vörös W., Baumjohann W., Nakamura R., Runov A., et al. Multi-scale magnetic field intermittence in the plasma sheet // Ann. Geophysicae. 2003. V. 21. № 9. P. 1955—1964. https://doi.org/10.5194/angeo-21-1955-2003
- Wang C.-P., Lyons L.R., Nagai T., Weygand J.M., Lui A.T.Y. Evolution of plasma sheet particle content under different interplanetary magnetic field conditions // J. Geophys. Res. 2010. V. 115. № 6. https://doi.org/10.1029/2009JA015028
- Weygand J.M., Kivelson M.G., Khurana K.K., Schwarzl H.K., et al. Plasma sheet turbulence observed by Cluster II // J. Geophys. Res. 2005. V. 110. № 2. https://doi.org/10.1029/2004JA010581
Supplementary files
