Geomagnetic Control on the Equatorial Plasma Bubble Formation
- Авторлар: Sidorova L.N.1
-
Мекемелер:
- Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences
- Шығарылым: Том 64, № 6 (2024)
- Беттер: 790-800
- Бөлім: Articles
- URL: https://permmedjournal.ru/0016-7940/article/view/681551
- DOI: https://doi.org/10.31857/S0016794024060075
- EDN: https://elibrary.ru/QOLYNN
- ID: 681551
Дәйексөз келтіру
Аннотация
Attempts have been made repeatedly to investigate the effect of magnetic activity on the equatorial plasma bubble (EPB) generation. At the moment, it is generally accepted that magnetic activity tends to suppress the EPB generation and evolution in the pre-midnight sector. As for the post-midnight sector, it is believed that the EPB occurrence probability will increase after midnight as magnetic activity increases. Moreover, the growth rates of the EPB occurrence probability will strongly depend on solar activity: at the solar activity minimum, they will be the most significant. A sufficient amount of the observations is required to confirm these ideas. For this purpose, the EPB observations obtained on board the ISS-b satellite (~972−1220 km, 1978−1979) in the pre- and post-midnight sectors are best suited. The data were considered in two latitudinal regions: equatorial/low-latitudinal (± 20°) and mid-latitudinal ± (20°−52°) regions. LT- and Kp-variations of the EPB occurrence probability were calculated for both groups. (1) It was revealed that the occurrence probability maximum of the EPBs recorded at the equator and in low latitudes is in the pre-midnight sector. The EPB occurrence probability decreases with increasing Kp index with a delay of 3 and 9 hours before the EPB detection. (2) However, the occurrence probability maximum of the EPBs recorded at the mid-latitudes is in the post-midnight sector. Their occurrence probability increases slightly as Kp index increases, when Kp is a 9-hours delayed one. Thus, the idea of the ionospheric disturbance dynamo (IDD) influence on the post-midnight EPB generation has been confirmed. IDD mechanism sets in after some hours of enhanced geomagnetic activity and favors the generation. However, its influence is weakened during the years of increased solar activity.
Толық мәтін

Авторлар туралы
L. Sidorova
Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences
Хат алмасуға жауапты Автор.
Email: lsid@izmiran.ru
Ресей, Troitsk
Әдебиет тізімі
- Сидорова Л.Н., Филиппов С.В. Долготная статистика плазменных “пузырей”, видимых на высотах верхней ионосферы в концентрации Не+ // Геомагнетизм и аэрономия. Т. 53. № 1. С. 64−77. 2013. https://doi.org/10.7868/S0016794012060107
- Сидорова Л.Н. Экваториальные плазменные “пузыри”: зависимость от местного времени // Геомагнетизм и аэрономия. Т. 60. № 5. С. 557–565. 2020. https://doi.org/10.31857/S0016794020050144
- Сидорова Л.Н. Экваториальные плазменные “пузыри”: Изменчивость широтного распределения с высотой // Геомагнетизм и аэрономия. Т. 61. № 4. C. 445–456. 2021. https://doi.org/10.31857/S0016794021040167
- Сидорова Л.Н. Экваториальные плазменные пузыри: влияние термосферных меридиональных ветров // Геомагнетизм и аэрономия. Т. 62. № 3. С. 374–382. 2022. https://doi.org/10.31857/S0016794022030166
- Сидорова Л.Н. Вероятность наблюдения экваториальных плазменных пузырей в зависимости от месяца года // Геомагнетизм и аэрономия. Т. 63. № 2. С. 238–246. 2023а. https://doi.org/10.31857/S0016794022600533
- Сидорова Л.Н. Экваториальные плазменные пузыри: влияние зонального термосферного ветра // Геомагнетизм и аэрономия. Т. 63. № 6. С. 798–805. 2023б. https://doi.org/10.31857/S0016794023600369
- Basu S., Basu Su., Rich F.J., Groves K.M., MacKenzie E., Coker C., Sahai Y., Fagundes P.R., Becker-Guedes F. Response of the equatorial ionosphere at dusk to penetration electric fields during intense magnetic storms // J. Geophys. Res. – Space. V. 112. № 8. ID A08308. 2007. https://doi.org/10.1029/2006JA012192
- Blanc M., Richmond A.D. The ionospheric disturbance dynamo // J. Geophys. Res. – Space. V. 85. № 4. P. 1669–1686. 1980. https://doi.org/10.1029/JA085iA04p01669
- Bowman G.G. A relationship between polar magnetic substorms, ionospheric height rises and the occurrence of spread F // J. Atmos. Terr. Phys. V. 40. № 6. P. 713–722. 1978. https://doi.org/10.1016/0021-9169(78)90129-0
- Burke W.J. Plasma bubbles near the dawn terminator in the topside ionosphere // Planet. Space Sci. V. 27. № 9. P. 1187−1193. 1979. https://doi.org/10.1016/0032-0633(79)90138-7
- Fejer B.G. Low latitude electrodynamic plasma drifts: A review // J. Atmos. Terr. Phys. V. 53. № 8. P. 677–693. 1991. https://doi.org/10.1016/0021-9169(91)90121-M
- Fejer B.G., Scherliess L. Time dependent response of equatorial electric fields to magnetospheric disturbances // Geophys. Res. Lett. V. 22. № 7. P. 851–854. 1995. https://doi.org/10.1029/95GL00390
- Fejer B.G., Scherliess L. Empirical models of storm time equatorial zonal electric fields // J. Geophys. Res. – Space. V. 102. № 11. P. 24047–24056. 1997. https://doi.org/10.1029/97JA02164
- Fejer B.G., Scherliess L., de Paula E.R. Effects of the vertical plasma drift velocity on the generation and evolution of equatorial spread F // J. Geophys. Res. – Space. V. 104. № 9. P. 19859–19869. 1999. https://doi.org/10.1029/1999JA900271
- Heelis R.A., Hanson W.B., Bailey G.J. Distributions of He+ at middle and equatorial latitudes during solar maximum // J. Geophys. Res. – Space. V. 95. № 7. P. 10313−10320. 1990. https://doi.org/10.1029/JA095iA07p10313
- Kelley M.C., Fejer B., Gonzales C. An explanation for anomalous equatorial ionospheric electric fields associated with a northward turning of the interplanetary magnetic field // Geophys. Res. Lett. V. 6. № 4. P. 301–304. 1979. https://doi.org/10.1029/GL006i004p00301
- Li G., Ning B., Liu L., Wan W., Liu J.Y. Effect of magnetic activity on plasma bubbles over equatorial and low-latitude regions in East Asia // Ann. Geophys. V. 27. № 1. P. 303–312. 2009. https://doi.org/10.5194/angeo-27-303-2009
- Martinis C.R., Mendillo M.J., Aarons J. Toward a synthesis of equatorial spread F onset and suppression during geomagnetic storms // J. Geophys. Res. – Space. V. 110. № 7. ID A07306. 2005. https://doi.org/10.1029/2003JA0101362
- Palmroth M., Laakso H., Fejer B.G., Pfaff R.F. Jr. DE 2 observations of morningside and eveningside plasma density depletions in the equatorial ionosphere // J. Geophys. Res. – Space. V. 105. № 8. P. 18429–18442. 2000. https://doi.org/10.1029/1999JA005090
- RRL. Summary plots of ionospheric parameters obtained from Ionosphere Sounding Satellite-b. Tokyo: Radio Research Laboratories. Ministry of Posts and Telecommunications. V. 1−3. 1983.
- RRL. Summary plots of ionospheric parameters obtained from Ionosphere Sounding Satellite-b. Tokyo: Radio Research Laboratories. Ministry of Posts and Telecommunications. Special Report. V. 4. 1985.
- Scherliess L., Fejer B.G. Storm time dependence of equatorial disturbance dynamo zonal electric fields // J. Geophys. Res. – Space. V. 102. № 11. P. 24037–24046. 1997. https://doi.org/10.1029/97JA02165
- Senior C., Blanc M. On the control of magnetospheric convection by the spatial distribution of ionospheric conductivities // J. Geophys. Res. – Space. V. 89. № 1. P. 261−284. 1984. https://doi.org/10.1029/JA089iA01p00261
- Sidorova L.N., Filippov S.V. Topside ionosphere He+ density depletions: seasonal/longitudinal occurrence probability // J. Atmos. Sol.-Terr. Phy. V. 86. P. 83–91. 2012. https://doi.org/10.1016/j.jastp.2012.06.013.
- Singh S., Bamgboye D.K., McClure J.P., Johnson F.S. Morphology of equatorial plasma bubbles // J. Geophys. Res. – Space. V. 102. № 9. P. 20019−20029. 1997. https://doi.org/10.1029/97JA01724
- Sobral J.H.A., Abdu M.A., Takahashi H., Taylor M.J., de Paula E.R., Zamlutti C.J., de Aquino M.G., Borba G.L. Ionospheric plasma bubble climatology over Brazil based on 22 years (1977–1998) of 630 nm airglow observations // J. Atmos. Sol.-Terr. Phy. V. 64. № 12−14. P. 1517−1524. 2002. https://doi.org/10.1016/S1364-6826(02)00089-5
- Stolle С., Lühr H., Rother M., Balasis G. Magnetic signatures of equatorial spread F as observed by the CHAMP satellite // J. Geophys. Res. – Space. V. 111. № 2. ID A02304. https://doi.org/10.1029/2005JA011184. 2006.
- Taylor H.A. Evidence of solar geomagnetic seasonal control of the topside ionosphere // Planet. Space Sci. V. 19. № 1. P. 77–93. 1971. https://doi.org/10.1016/0032-0633(71)90068-7
- Watanabe S., Oya H. Occurrence characteristics of low latitude ionospheric irregularities observed by impedance probe on board the Hinotori satellite // J. Geomagn. Geoelectr. V. 38. № 2. P. 125−131. 1986. https://doi.org/10.5636/jgg.38.125
- Wilford C.R., Moffett R.J., Rees J.M., Bailey G.J., Gonzalez S.A. Comparison of the He+ layer observed over Arecibo during solar maximum and solar minimum with CTIP model results // J. Geophys. Res. – Space. V. 108. № 12. P. 1452−1461. 2003. https://doi.org/10.1029/2003JA009940.
- Woodman R.F., La Hoz C. Radar observations of F-region equatorial irregularities // J. Geophys. Res. V. 81. № 31. P. 5447−5466. 1976. https://doi.org/10.1029/JA081i031p05447
Қосымша файлдар
