Geomagnetic Control on the Equatorial Plasma Bubble Formation

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Attempts have been made repeatedly to investigate the effect of magnetic activity on the equatorial plasma bubble (EPB) generation. At the moment, it is generally accepted that magnetic activity tends to suppress the EPB generation and evolution in the pre-midnight sector. As for the post-midnight sector, it is believed that the EPB occurrence probability will increase after midnight as magnetic activity increases. Moreover, the growth rates of the EPB occurrence probability will strongly depend on solar activity: at the solar activity minimum, they will be the most significant. A sufficient amount of the observations is required to confirm these ideas. For this purpose, the EPB observations obtained on board the ISS-b satellite (~972−1220 km, 1978−1979) in the pre- and post-midnight sectors are best suited. The data were considered in two latitudinal regions: equatorial/low-latitudinal (± 20°) and mid-latitudinal ± (20°−52°) regions. LT- and Kp-variations of the EPB occurrence probability were calculated for both groups. (1) It was revealed that the occurrence probability maximum of the EPBs recorded at the equator and in low latitudes is in the pre-midnight sector. The EPB occurrence probability decreases with increasing Kp index with a delay of 3 and 9 hours before the EPB detection. (2) However, the occurrence probability maximum of the EPBs recorded at the mid-latitudes is in the post-midnight sector. Their occurrence probability increases slightly as Kp index increases, when Kp is a 9-hours delayed one. Thus, the idea of the ionospheric disturbance dynamo (IDD) influence on the post-midnight EPB generation has been confirmed. IDD mechanism sets in after some hours of enhanced geomagnetic activity and favors the generation. However, its influence is weakened during the years of increased solar activity.

Толық мәтін

Рұқсат жабық

Авторлар туралы

L. Sidorova

Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: lsid@izmiran.ru
Ресей, Troitsk

Әдебиет тізімі

  1. Сидорова Л.Н., Филиппов С.В. Долготная статистика плазменных “пузырей”, видимых на высотах верхней ионосферы в концентрации Не+ // Геомагнетизм и аэрономия. Т. 53. № 1. С. 64−77. 2013. https://doi.org/10.7868/S0016794012060107
  2. Сидорова Л.Н. Экваториальные плазменные “пузыри”: зависимость от местного времени // Геомагнетизм и аэрономия. Т. 60. № 5. С. 557–565. 2020. https://doi.org/10.31857/S0016794020050144
  3. Сидорова Л.Н. Экваториальные плазменные “пузыри”: Изменчивость широтного распределения с высотой // Геомагнетизм и аэрономия. Т. 61. № 4. C. 445–456. 2021. https://doi.org/10.31857/S0016794021040167
  4. Сидорова Л.Н. Экваториальные плазменные пузыри: влияние термосферных меридиональных ветров // Геомагнетизм и аэрономия. Т. 62. № 3. С. 374–382. 2022. https://doi.org/10.31857/S0016794022030166
  5. Сидорова Л.Н. Вероятность наблюдения экваториальных плазменных пузырей в зависимости от месяца года // Геомагнетизм и аэрономия. Т. 63. № 2. С. 238–246. 2023а. https://doi.org/10.31857/S0016794022600533
  6. Сидорова Л.Н. Экваториальные плазменные пузыри: влияние зонального термосферного ветра // Геомагнетизм и аэрономия. Т. 63. № 6. С. 798–805. 2023б. https://doi.org/10.31857/S0016794023600369
  7. Basu S., Basu Su., Rich F.J., Groves K.M., MacKenzie E., Coker C., Sahai Y., Fagundes P.R., Becker-Guedes F. Response of the equatorial ionosphere at dusk to penetration electric fields during intense magnetic storms // J. Geophys. Res. – Space. V. 112. № 8. ID A08308. 2007. https://doi.org/10.1029/2006JA012192
  8. Blanc M., Richmond A.D. The ionospheric disturbance dynamo // J. Geophys. Res. – Space. V. 85. № 4. P. 1669–1686. 1980. https://doi.org/10.1029/JA085iA04p01669
  9. Bowman G.G. A relationship between polar magnetic substorms, ionospheric height rises and the occurrence of spread F // J. Atmos. Terr. Phys. V. 40. № 6. P. 713–722. 1978. https://doi.org/10.1016/0021-9169(78)90129-0
  10. Burke W.J. Plasma bubbles near the dawn terminator in the topside ionosphere // Planet. Space Sci. V. 27. № 9. P. 1187−1193. 1979. https://doi.org/10.1016/0032-0633(79)90138-7
  11. Fejer B.G. Low latitude electrodynamic plasma drifts: A review // J. Atmos. Terr. Phys. V. 53. № 8. P. 677–693. 1991. https://doi.org/10.1016/0021-9169(91)90121-M
  12. Fejer B.G., Scherliess L. Time dependent response of equatorial electric fields to magnetospheric disturbances // Geophys. Res. Lett. V. 22. № 7. P. 851–854. 1995. https://doi.org/10.1029/95GL00390
  13. Fejer B.G., Scherliess L. Empirical models of storm time equatorial zonal electric fields // J. Geophys. Res. – Space. V. 102. № 11. P. 24047–24056. 1997. https://doi.org/10.1029/97JA02164
  14. Fejer B.G., Scherliess L., de Paula E.R. Effects of the vertical plasma drift velocity on the generation and evolution of equatorial spread F // J. Geophys. Res. – Space. V. 104. № 9. P. 19859–19869. 1999. https://doi.org/10.1029/1999JA900271
  15. Heelis R.A., Hanson W.B., Bailey G.J. Distributions of He+ at middle and equatorial latitudes during solar maximum // J. Geophys. Res. – Space. V. 95. № 7. P. 10313−10320. 1990. https://doi.org/10.1029/JA095iA07p10313
  16. Kelley M.C., Fejer B., Gonzales C. An explanation for anomalous equatorial ionospheric electric fields associated with a northward turning of the interplanetary magnetic field // Geophys. Res. Lett. V. 6. № 4. P. 301–304. 1979. https://doi.org/10.1029/GL006i004p00301
  17. Li G., Ning B., Liu L., Wan W., Liu J.Y. Effect of magnetic activity on plasma bubbles over equatorial and low-latitude regions in East Asia // Ann. Geophys. V. 27. № 1. P. 303–312. 2009. https://doi.org/10.5194/angeo-27-303-2009
  18. Martinis C.R., Mendillo M.J., Aarons J. Toward a synthesis of equatorial spread F onset and suppression during geomagnetic storms // J. Geophys. Res. – Space. V. 110. № 7. ID A07306. 2005. https://doi.org/10.1029/2003JA0101362
  19. Palmroth M., Laakso H., Fejer B.G., Pfaff R.F. Jr. DE 2 observations of morningside and eveningside plasma density depletions in the equatorial ionosphere // J. Geophys. Res. – Space. V. 105. № 8. P. 18429–18442. 2000. https://doi.org/10.1029/1999JA005090
  20. RRL. Summary plots of ionospheric parameters obtained from Ionosphere Sounding Satellite-b. Tokyo: Radio Research Laboratories. Ministry of Posts and Telecommunications. V. 1−3. 1983.
  21. RRL. Summary plots of ionospheric parameters obtained from Ionosphere Sounding Satellite-b. Tokyo: Radio Research Laboratories. Ministry of Posts and Telecommunications. Special Report. V. 4. 1985.
  22. Scherliess L., Fejer B.G. Storm time dependence of equatorial disturbance dynamo zonal electric fields // J. Geophys. Res. – Space. V. 102. № 11. P. 24037–24046. 1997. https://doi.org/10.1029/97JA02165
  23. Senior C., Blanc M. On the control of magnetospheric convection by the spatial distribution of ionospheric conductivities // J. Geophys. Res. – Space. V. 89. № 1. P. 261−284. 1984. https://doi.org/10.1029/JA089iA01p00261
  24. Sidorova L.N., Filippov S.V. Topside ionosphere He+ density depletions: seasonal/longitudinal occurrence probability // J. Atmos. Sol.-Terr. Phy. V. 86. P. 83–91. 2012. https://doi.org/10.1016/j.jastp.2012.06.013.
  25. Singh S., Bamgboye D.K., McClure J.P., Johnson F.S. Morphology of equatorial plasma bubbles // J. Geophys. Res. – Space. V. 102. № 9. P. 20019−20029. 1997. https://doi.org/10.1029/97JA01724
  26. Sobral J.H.A., Abdu M.A., Takahashi H., Taylor M.J., de Paula E.R., Zamlutti C.J., de Aquino M.G., Borba G.L. Ionospheric plasma bubble climatology over Brazil based on 22 years (1977–1998) of 630 nm airglow observations // J. Atmos. Sol.-Terr. Phy. V. 64. № 12−14. P. 1517−1524. 2002. https://doi.org/10.1016/S1364-6826(02)00089-5
  27. Stolle С., Lühr H., Rother M., Balasis G. Magnetic signatures of equatorial spread F as observed by the CHAMP satellite // J. Geophys. Res. – Space. V. 111. № 2. ID A02304. https://doi.org/10.1029/2005JA011184. 2006.
  28. Taylor H.A. Evidence of solar geomagnetic seasonal control of the topside ionosphere // Planet. Space Sci. V. 19. № 1. P. 77–93. 1971. https://doi.org/10.1016/0032-0633(71)90068-7
  29. Watanabe S., Oya H. Occurrence characteristics of low latitude ionospheric irregularities observed by impedance probe on board the Hinotori satellite // J. Geomagn. Geoelectr. V. 38. № 2. P. 125−131. 1986. https://doi.org/10.5636/jgg.38.125
  30. Wilford C.R., Moffett R.J., Rees J.M., Bailey G.J., Gonzalez S.A. Comparison of the He+ layer observed over Arecibo during solar maximum and solar minimum with CTIP model results // J. Geophys. Res. – Space. V. 108. № 12. P. 1452−1461. 2003. https://doi.org/10.1029/2003JA009940.
  31. Woodman R.F., La Hoz C. Radar observations of F-region equatorial irregularities // J. Geophys. Res. V. 81. № 31. P. 5447−5466. 1976. https://doi.org/10.1029/JA081i031p05447

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. LT-variations of the EPB observation probability (RERV). (a) - Equatorial and low latitude region: ± 20°. (b) - Mid-latitude region: ± (20°-52°).

Жүктеу (169KB)
3. Fig. 2. RERV variations as a function of the interval value of the Kr-index. Equator and low latitude region: ± 20°. (a) - Delay of the Kr-index for 3 hours. (b) - Delay of the Kr-index of 6 hours. (c) - Delay of the Kr-index for 9 hours.

Жүктеу (203KB)
4. Fig. 3. Variations of RERV as a function of the interval value of the Kr-index. Mid-latitude region: ± (20°-52°). (a) - Delay of the Kr-index for 3 hours. (b) - Delay of the Kr-index for 6 hours. (c) - Kr-index delay for 9 hours.

Жүктеу (213KB)
5. Fig. 4. Schematic representation of the evolution of equatorial plasma bubbles with respect to magnetic force tubes, dipole latitude, and altitude. Horizontal lines show the approximate flyby altitudes of the ISS-b (~ 972-1220 km), ROCSAT-1 (~ 600 km), and AE-E (~ 350-475 km) satellites.

Жүктеу (196KB)

© Russian Academy of Sciences, 2024