Kinetics of the Thermal Decomposition of Oil Residue and Its SARA Fractions in the Presence of Vegetable Oil
- 作者: Boyar S.V.1, Kopytov M.A.1
-
隶属关系:
- Institute of Petroleum Chemistry, Siberian Branch, Russian Academy of Sciences
- 期: 编号 2-3 (2023)
- 页面: 92-98
- 栏目: Articles
- URL: https://permmedjournal.ru/0023-1177/article/view/661922
- DOI: https://doi.org/10.31857/S0023117723020020
- EDN: https://elibrary.ru/BENTWV
- ID: 661922
如何引用文章
详细
Dynamic thermogravimetry was used to study the thermal degradation of the oil residue of Usinskaya oil and its saturated, aromatic, resin, and asphaltene (SARA) fractions in the presence of sunflower oil. Thermolysis experiments were carried out in an atmosphere of pure argon. Based on the data of thermogravimetric analysis, the activation energies of the thermal degradation of the oil residue, resins, asphaltenes, saturated and aromatic hydrocarbons, and their mixtures with sunflower oil were calculated in the temperature range of a maximum weight loss rate. It was shown that the addition of 10.0 wt % sunflower oil to the oil residue and its components led to a decrease in the activation energy. This fact indicates that the sunflower oil additive affected the mechanism of thermal degradation of crude oil and its components. The greatest change in the activation energy was observed for asphaltenes: ΔЕа = 48.4 kJ/mol.
作者简介
S. Boyar
Institute of Petroleum Chemistry, Siberian Branch, Russian Academy of Sciences
Email: bsv@ipc.tsc.ru
Tomsk, 634055 Russia
M. Kopytov
Institute of Petroleum Chemistry, Siberian Branch, Russian Academy of Sciences
编辑信件的主要联系方式.
Email: kma@ipc.tsc.ru
Tomsk, 634055 Russia
参考
- Scheffer B., van Koten M.A., Robschlager K.W., de Boks F.C. // Catalysis Today. 1998. V. 43. P. 217.
- Castañeda L.C., Muñoz J.A.D., Ancheyta J. // Catalysis Today. 2014. V. 220–222. P. 248.
- Пахманова О.А., Антонов С.В., Дементьев К.И., Герзелиев И.М., Хаджиев С.Н. // Нефтехимия. 2012. Т. 52. № 6. С. 432. [Petroleum Chemistry, 2012, vol. 52, no. 6, p. 401. https://doi.org/10.1134/S0965544112060096]
- Gonçalves M.L.A., Teixeira M.A.G., Pereira R.C.L., Mercury R.L.P., Matos J.R. // J. Thermal Analysis and Calorimetry. 2001. V. 64. P. 697.
- Trejo F., Rana M.S., Ancheyta J. // Catalysis Today. 2010. V. 150. P. 272.
- Юсевич А.И., Тимошкина М.А., Грушова Е.И. // Нефтехимия. 2010. Т. 50. № 3. С. 241. [Petroleum Chemistry, 2010, vol. 50, no. 3, p. 231. https://doi.org/10.1134/S0965544110030084]
- Kopytov M.A., Boyar S.V., Golovko A.K. // AIP Conference Proceedings. 2018. V. 2051. № 020131.
- Копытов М.А., Головко А.К. // Нефтехимия. 2017. Т. 57. № 1. С. 41. [Petroleum Chemistry, 2017, vol. 57, no. 1, p. 39. https://doi.org/10.1134/S0965544116090139]https://doi.org/10.7868/S0028242116060137
- Доронин В.П., Потапенко О.В., Липин П.В., Сорокина Т.П., Булучевская Л.А. // Нефтехимия. 2012. Т. 52. № 6. С. 422. [Petroleum Chemistry, 2012, vol. 52, no. 6, p. 392. https://doi.org/10.1134/S0965544112060059]
- Boyar S.V., Kopytov M.A. // AIP Conference. Proceedings. 2022. V. 2509. № 020031.
- Бойцова А.А., Байталов Ф., Строкин С.В. // Деловой журнал Neftegaz.ru. 2020. V. 99. № 3. P. 46.
- Тимошкина М.А., Юсевич А.И., Михаленок С.Г., Прокопчук Н.Р. // Нефтехимия. 2014. Т. 54. № 2. С. 113. [Petroleum Chemistry, 2014, vol. 54, no. 2, p. 111. https://doi.org/10.1134/S0965544114020121]https://doi.org/10.7868/S0028242114020129
- Opfermann J.R., Kaisersberger E., Flammersheim H.J. // Thermochimica Acta. 2002. V. 391. P. 119–127.
补充文件
