Radiolytic degradation of ethylene glycol and glycerol in aqueous solutions

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The influence of absorbed dose (up to 90 kGy) and the initial concentrations of ethylene glycol and glycerol (from 30 to 250 mg / L) on their degradation in aqueous solutions under a 3MeV electron beam has been studied. Aeration of the solutions during irradiation decreased the yield of degradation. In the absence of aeration, the observed initial yields of degradation were about 0.23 μmol / J for ethylene glycol and about 0.14 μmol / J for glycerol. Degradation products formed in aqueous solutions are more resistant to ionizing radiation compared to the parent alcohols. A simultaneous reduction in alcohol concentration and chemical oxygen demand (COD) to standard values was achieved in solutions with an initial concentration of 30–40 mg / L at a dose of no higher than 2–3 kGy.

About the authors

E. M. Kholodkova

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: ponomarev@ipc.rssi.ru
Russian Federation, Moscow

A. V. Popova

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: ponomarev@ipc.rssi.ru
Russian Federation, Moscow

K. A. Artamonova

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: ponomarev@ipc.rssi.ru
Russian Federation, Moscow

A. V. Ponomarev

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Author for correspondence.
Email: ponomarev@ipc.rssi.ru
Russian Federation, Moscow

References

  1. Rebsdat S., Mayer D. Ethylene Glycol. Ullmann’s Encyclopedia of Industrial Chemistry. Wiley, 2000.
  2. Christoph R., Schmid, B., Steinberner U., Dilla W., Karinen R. Glycerol. Ullmann’s Encyclopedia of Industrial Chemistry. Wiley, 2006.
  3. Hilles A.H., Abu Amr S.S., Aziz H.A., Bashir M.J.K. // Advanced Oxidation Processes for Water and Wastewater Treatment. London: IWA Publishing, 2019. Р. 46–69.
  4. Ponomarev A.V., Ershov B.G. // Environmental Science and Technology. 2020. V. 54. P. 5331–5344.
  5. Nepachalovich P.S., Shadyro O.I., Bekish A.V., Shmanai V.V. // Free Radic. Res. 2020. V. 54. P. 732–744.
  6. Pikaev A.K., Kartasheva L.I. // Int.J. Radiat. Phys. Chem. 1975. V. 7. P. 395–415.
  7. Ponomarev A.V., Vlasov S.I., Kholodkova E.M. // High Energy Chemistry. 2019. V. 53. P. 314–320.
  8. Lutova Z.B., Panasyuk S.L., Yudin I.V. // Bull. Saint Petersbg. State Inst. Technol. 2019. P. 18–24.
  9. Plant A.G., Kos B., Jazbec A., Snoj L., Joyce M.J., Najdanovic-Visak V. // Ind.Eng. Chem. Res. 2023. V. 62. P. 21152–21163.
  10. Plan A.G., Kos B., Jazbec A., Snoj L., Najdanovic-Visak V., Joyce M.J. // Commun. Chem. 2021. V. 4. P. 132.
  11. Kholodkova E.M., Ponomarev A.V. // High Energy Chem. 2023. V. 57. P. 146–150.
  12. Ponomarev A.V. // Radiation Physics and Chemistry. 2020. V. 172. P. 108812.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences