Radiolytic degradation of ethylene glycol and glycerol in aqueous solutions

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The influence of absorbed dose (up to 90 kGy) and the initial concentrations of ethylene glycol and glycerol (from 30 to 250 mg / L) on their degradation in aqueous solutions under a 3MeV electron beam has been studied. Aeration of the solutions during irradiation decreased the yield of degradation. In the absence of aeration, the observed initial yields of degradation were about 0.23 μmol / J for ethylene glycol and about 0.14 μmol / J for glycerol. Degradation products formed in aqueous solutions are more resistant to ionizing radiation compared to the parent alcohols. A simultaneous reduction in alcohol concentration and chemical oxygen demand (COD) to standard values was achieved in solutions with an initial concentration of 30–40 mg / L at a dose of no higher than 2–3 kGy.

Sobre autores

E. Kholodkova

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: ponomarev@ipc.rssi.ru
Rússia, Moscow

A. Popova

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: ponomarev@ipc.rssi.ru
Rússia, Moscow

K. Artamonova

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Email: ponomarev@ipc.rssi.ru
Rússia, Moscow

A. Ponomarev

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Autor responsável pela correspondência
Email: ponomarev@ipc.rssi.ru
Rússia, Moscow

Bibliografia

  1. Rebsdat S., Mayer D. Ethylene Glycol. Ullmann’s Encyclopedia of Industrial Chemistry. Wiley, 2000.
  2. Christoph R., Schmid, B., Steinberner U., Dilla W., Karinen R. Glycerol. Ullmann’s Encyclopedia of Industrial Chemistry. Wiley, 2006.
  3. Hilles A.H., Abu Amr S.S., Aziz H.A., Bashir M.J.K. // Advanced Oxidation Processes for Water and Wastewater Treatment. London: IWA Publishing, 2019. Р. 46–69.
  4. Ponomarev A.V., Ershov B.G. // Environmental Science and Technology. 2020. V. 54. P. 5331–5344.
  5. Nepachalovich P.S., Shadyro O.I., Bekish A.V., Shmanai V.V. // Free Radic. Res. 2020. V. 54. P. 732–744.
  6. Pikaev A.K., Kartasheva L.I. // Int.J. Radiat. Phys. Chem. 1975. V. 7. P. 395–415.
  7. Ponomarev A.V., Vlasov S.I., Kholodkova E.M. // High Energy Chemistry. 2019. V. 53. P. 314–320.
  8. Lutova Z.B., Panasyuk S.L., Yudin I.V. // Bull. Saint Petersbg. State Inst. Technol. 2019. P. 18–24.
  9. Plant A.G., Kos B., Jazbec A., Snoj L., Joyce M.J., Najdanovic-Visak V. // Ind.Eng. Chem. Res. 2023. V. 62. P. 21152–21163.
  10. Plan A.G., Kos B., Jazbec A., Snoj L., Najdanovic-Visak V., Joyce M.J. // Commun. Chem. 2021. V. 4. P. 132.
  11. Kholodkova E.M., Ponomarev A.V. // High Energy Chem. 2023. V. 57. P. 146–150.
  12. Ponomarev A.V. // Radiation Physics and Chemistry. 2020. V. 172. P. 108812.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2024