Influence of absorbing layers on the average dose and dose uniformity during irradiation with 1–3 MEV electrons

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Electron beams with energies up to 3 MeV, widely used in technological and research practice, have a relatively low penetration depth into matter, and the nonuniformity of energy absorption can reach 30% per 1 mm of path. High nonuniformity, as well as the high cost of radiation, requires the researcher to have skills in optimizing the uniformity of irradiation and reducing energy losses. This work presents the dependence of the average absorbed dose and dose nonuniformity when irradiating a liquid with a horizontal beam in test tubes or pipes with different glass wall thicknesses (0.2–2 mm Pyrex). The dependencies are applicable to clarify, predict and analyze the distribution of absorbed dose in materials.

全文:

受限制的访问

作者简介

A. Bludenko

A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, RAS

Email: ponomarev@ipc.rssi.ru
俄罗斯联邦, Moscow

A. Ponomarev

A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, RAS

编辑信件的主要联系方式.
Email: ponomarev@ipc.rssi.ru
俄罗斯联邦, Moscow

参考

  1. Berejka A.J., Cleland M.R., Walo M. // Radiat. Phys. Chem. 2014. V. 94. P. 141.
  2. Ponomarev A.V. // Radiat. Phys. Chem. 2016. V. 118. P. 138.
  3. Chmielewski A.G. // Radiat. Phys. Chem. 2023. V. 213. P. 111233.
  4. Ponomarev A.V., Ershov B.G. // Environ. Sci. Technol. 2020. V. 54. P. 5331.
  5. Yuri Kim, Ershov B.G., Ponomarev A.V. // High Energy Chem. 2020. V. 54. P. 462.
  6. Pikaev A.K. // High Energy Chem. 2001. V. 35. P. 367.
  7. Woods R., Pikaev A. Applied radiation chemistry. Radiation processing. NY: Wiley, 1994.
  8. Gryczka U., Zimek Z., Walo M., Chmielewska-Śmietanko D., Bułka S. // Appl. Sci. 2021. V. 11. P. 11194.
  9. Gromov A.A., Zhanzhora A.P., Kovalenko O.I. // Meas. Stand. Ref. Mater. 2022. V. 17. P. 23.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Cross-section of a test tube and the corresponding “depth–dose” curve. F is the thickness of the beam window foil (μm); dtube is the inner diameter of the test tube (liquid thickness, mm); tw is the thickness of the test tube wall (mm); djet is the thickness of the jet (mm); dtray is the thickness of the liquid in the cup (mm); A is the position of the film dosimeter during preliminary dosimetry. The air gap is not shown.

下载 (253KB)
3. Fig. 2. Dependence of the average absorbed dose Dav on dtube (tw = 0.5 mm) at E = 1 MeV and different foils.

下载 (95KB)
4. Fig. 3. Dependence of the average absorbed dose Dav (a) and the index DD (b) on the diameter dtube and the thickness of the glass wall tw in a test tube at E = 1 MeV and F = 40 μm Al.

下载 (143KB)
5. Fig. 4. Dependence of the average absorbed dose Dav (a) and the index DD (b) on the diameter dtube and the thickness of the glass wall tw in a test tube at E = 2 MeV and F = 40 μm Al.

下载 (203KB)
6. Fig. 5. Dependence of the average absorbed dose Dav (a) and dose variation (b) on the diameter dtube and the thickness of the glass wall tw in a test tube at E = 3 MeV and F = 40 μm Al.

下载 (189KB)

版权所有 © Russian Academy of Sciences, 2024