Effect of conditions for obtaining detonation nanodiamond on surface composition and stability of its aqueous sols

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

In present work, the effect of additional treatment of detonation nanodiamond (DND) powder of basic purification on the surface composition of DND particles, their electrokinetic properties, as well as aggregate stability in solutions of indifferent electrolyte (NaCl) in a wide pH range was studied. It has been found that a higher degree of purification of the samples and an increase in the number of protonated carboxyl groups on the surface of the DND particles due to additional acid and thermoammonia treatment leads to a shift in the position of the isoelectric point (IET) from pH 7.0 for the initial sample to pH 6.3 and pH 6.0, respectively. It is shown that the coagulation thresholds of hydrosols at natural pH and the position of stability zones in 10–3 M sodium chloride solution are in full compliance with the IET values. The highest thresholds are observed at pH 5.8 for the initial DND, while for the dispersion of DND particles after thermoammonia treatment, fast coagulation occurs already at a concentration of 10–4 M. It is also shown that the aggregate stability zones for additionally treated DND samples almost coincide. In the case of DND of basic purification, the stability zone expands in the area of positive zeta-potential, and in the area of negative values stability is not observed, probably due to the partial dissolution of surface impurities at high pH and their transition in ionic form to the solution, which causes coagulation of DND particles.

全文:

受限制的访问

作者简介

A. Volkova

Санкт-Петербургский государственный университет

编辑信件的主要联系方式.
Email: anna.volkova@spbu.ru
俄罗斯联邦, 199034, Санкт-Петербург, Университетская наб., 7-9

D. Savelev

Санкт-Петербургский государственный университет

Email: anna.volkova@spbu.ru
俄罗斯联邦, 199034, Санкт-Петербург, Университетская наб., 7-9

N. Chuikov

Санкт-Петербургский государственный университет

Email: anna.volkova@spbu.ru
俄罗斯联邦, 199034, Санкт-Петербург, Университетская наб., 7-9

V. Vodolazhskii

Санкт-Петербургский государственный университет

Email: anna.volkova@spbu.ru
俄罗斯联邦, 199034, Санкт-Петербург, Университетская наб., 7-9

L. Ermakova

Санкт-Петербургский государственный университет

Email: anna.volkova@spbu.ru
俄罗斯联邦, 199034, Санкт-Петербург, Университетская наб., 7-9

参考

  1. ДолматовВ.Ю. Ультрадисперсные алмазы детонационного синтеза: свойства и применение // Успехи химии. 2001. Т. 70. № 7. С. 686–708. https://doi.org/10.1070/RC2001v070n07ABEH000665
  2. Долматов В.Ю. Детонационные наноалмазы в маслах и смазках // Сверхтвердые материалы. 2010. Т. 32. № 1. С. 19–28.
  3. Volkov D.S., Krivoshein P.K., Mikheev I.V., Proskurnin M.A. Pristine detonation nanodiamonds as regenerable adsorbents for metal cations // Diamond and Related Materials. 2020. V. 110. P. 108121. https://doi.org/10.1016/j.diamond.2020.108121
  4. Peristyy A., Paull B., Nesterenko P.N. Ion-exchange properties of microdispersed sintered detonation nanodiamond // Adsorption. 2016. V. 22. P. 371–383. https://doi.org/10.1007/s10450-016-9786-9
  5. Aleksenskii A.A, Chizhikova A.S., Kuular V.I.et al. Basic properties of hydrogenated detonation nanodiamonds // Diamond and Related Materials. 2024. V. 142. P. 110733. https://doi.org/10.1016/j.diamond.2023.110733
  6. Turcheniuk K., Mochalin V.N. Biomedical applications of nanodiamond // Nanotechnology. 2017. V. 28. P. 252001–252027. https://doi.org/10.1088/1361-6528/aa6ae4
  7. Schrand A.M., Ciftan Hens S.A., Shenderova O.A. Nanodiamond particles: Properties and perspectives for bioapplications // Critical Reviews in Solid State and Materials Sciences. 2009. V. 34. № 1–2. P. 18–74. https://doi.org/10.1080/10408430902831987
  8. Rosenholm J.M., Vlasov I.I., Burikov S.A. et al. Nanodiamond-based composite structures for biomedical imaging and drug delivery // Journal of Nanoscience and Nanotechnology. 2015. V. 15. № 2. P. 959–971. https://doi.org/10.1166/jnn.2015.9742
  9. Xu J., Chow E. Biomedical applications of nanodiamonds: From drug-delivery to diagnostics // SLAS Technology. 2023. V. 28. №4. P. 214–222. https://doi.org/10.1016/j.slast.2023.03.007
  10. Чиганова Г.А., Государева Е.Ю. Структурообразование в водных дисперсиях детонационных наноалмазов // Российские нанотехнологии. 2016. Т. 11. № 7–8. С. 25–29.
  11. Соловьёва К.Н., Беляев В.Н., Петров Е.А. Исследование свойств детонационных наноалмазов в зависимости от технологии глубокой очистки // Южно-Сибирский научный вестник. 2020. Т. 21. № 3. С. 62–67. https://doi.org/10.25699/SSSB.2020.21.3.010
  12. Соловьёва К.Н., Петров Е.А., Беляев В.Н. Основы технологии финишной очистки детонационных наноалмазов // Вестник технологического университета. 2019. Т. 22. № 12. С. 85–87.
  13. Shenderova O., Petrov I., Walsh J. et al. Modification of detonation nanodiamonds by heat treatment in air // Diamond & Related Materials. 2006. V. 15. P. 1799–1803 https://doi.org/10.1016/j.diamond.2006.08.032
  14. Шарин П.П., Сивцева А.В., Попов В.И. Термоокисление на воздухе нанопорошков алмазов, полученных механическим измельчением и методом детонационного синтеза // Известия вузов. Порошковая металлургия и функциональные покрытия. 2022. № 4. С. 67–83. https://doi.org/10.17073/1997-308X-2022-4-67-83
  15. Osswald S., Yushin G., Mochalin V. et al. Control of sp2/sp3 carbon ratio and surface chemistry of nanodiamond powders by selective oxidation in air // Journal of the American Chemical Society. 2006. V. 128. P. 11635–11642
  16. Кулакова И.И. Модифицирование детонационного наноалмаза: влияние на его физико-химические свойства // Российский химический журнал. 2004. Т. 48. № 5. С. 97–106.
  17. Arnault J.C., Girard H.A. Hydrogenated nanodiamonds: Synthesis and surface properties //Current Opinion in Solid State and Materials Science. 2017. V. 21. P. 10–16. https://doi.org/10.1016/j.cossms.2016.06.007
  18. Williams O.A., Hees J., Dieker C. et al. Size-dependent reactivity of diamond nanoparticles // ACS Nano. 2010. V. 4. № 8. P. 4824–4830. https://doi.org/10.1021/nn100748k
  19. Gines L., Sow M., Mandal S. et al. Positive zeta potential of nanodiamonds // Nanoscale. 2017. V. 9. P. 12549–12555. https://doi.org/10.1039/C7NR03200E
  20. Terada D., Osawa E., So F. et al. A simple and soft chemical deaggregation method producing single-digit detonation nanodiamonds // Nanoscale Adv. 2022. V. 4. P. 2268–2277. https://doi.org/10.1039/D1NA00556A
  21. Batsanov S. S., Dan’kin D. A., Gavrilkin S. M. et al. Structural changes in colloid solutions of nanodiamond // New J. Chem. 2020. V. 44 P. 1640–1647. https://doi.org/10.1039/C9NJ05191K
  22. Petrova N., Zhukov A., Gareeva F. et al. Interpretation of electrokinetic measurements of nanodiamond particles // Diamond and Related Materials. 2012. V. 30. P. 62–69. https://doi.org/10.1016/j.diamond.2012.10.004
  23. Gareeva F., Petrova N., Shenderova O., Zhukov A. Electrokinetic properties of detonation nanodiamond aggregates inaqueous KCl solutions // Colloids and Surfaces A: Physicochem. Eng. Aspects. 2014. V. 440. P. 202–207. https://doi.org/10.1016/j.colsurfa.2012.08.055
  24. Жуков А. Н., Швидченко А.В., Юдина Е.Б. Электроповерхностные свойства гидрозолей детонационного наноалмаза в зависимости от размера дисперсных частиц // Коллоидный журнал. 2020. Т. 82. № 4. С. 416–422. https://doi.org/10.31857/S0023291220040175
  25. Сычёв Д. Ю., Жуков А. Н., Голикова Е. В., Суходолов Н. Г. Влияние простых электролитов на коагуляцию гидрозолей монодисперсного отрицательно заряженного детонационного наноалмаза // Коллоидный журнал. 2017. Т. 79. № 6. С. 785–791. https://doi.org/10.7868/S0023291217060118
  26. Mchedlov-Petrossyan N. O., Kamneva N. N., Mary-nin A. I. et al. Colloidal properties and behaviors of 3 nm primary particles of detonation nanodiamonds in aqueous media // Phys. Chem. Chem. Phys. 2015. V. 17. P. 16186–16203. https://doi.org/10.1039/C5CP01405K
  27. Mchedlov-Petrossyan N. O., Kamneva N. N., Kryshtal A. P. et al. The properties of 3 nm-sized detonation diamond from the point of view of colloid science // Ukr. J. Phys. 2015. V. 60. Р. 932–937. https://doi.org/10.15407/ujpe60.09.0932
  28. Mchedlov-Petrossyan N. O., Kriklya N. N., Kryshtal A. P. et al. The interaction of the colloidal species in hydrosols of nanodiamond with inorganic and organic electrolytes // Journal of Molecular Liquids. 2019. V. 283. P. 849–859. https://doi.org/10.1016/j.molliq.2019.03.095
  29. Волкова А.В., Белобородов А.А., Водолажский В.А. и др. Влияние рН и концентрации индифферентного электролита на агрегативную устойчивость водного золя детонационного алмаза // Коллоидный журнал. 2024. Т. 86. № 2. С. 169–192. https://doi.org/10.31857/S0023291224020031
  30. Petit T., Puskar L. FTIR spectroscopy of nanodiamonds: Methods and interpretation // Diamond & Related Materials. 2018. V. 89. P. 52–66. https://doi.org/10.1016/j.diamond.2018.08.005
  31. Shenderova O., Panich A.M., Moseenkov S. et al. Hydroxylated detonation nanodiamond: FTIR, XPS, and NMR studies // Phys. Chem. C. 2011. V. 115. № 39. P. 19005–19011. https://doi.org/10.1021/jp205389m
  32. Stehlik S., Mermoux M., Schummer B. et al. Size effects on surface chemistry and Raman spectra of sub-5 nm oxidized high-pressure high-temperature and detonation nanodiamonds // J. Phys. Chem. C. 2021. V. 125. P. 5647−5669. https://doi.org/10.1021/acs.jpcc.0c09190
  33. Алексенский А. Е., Байдакова М. В., Вуль А. Я., Сиклицкий В. Структура алмазного нанокластера // Физика твердого тела. 1999. Т. 41. № 4. С. 740—743.
  34. Шарин П.П., Сивцева А.В., Яковлева С.П. и др. Сравнение морфологических и структурных характеристик частиц нанопорошков, полученных измельчением природного алмаза и методом детонационного синтеза // Известия вузов. Порошковая металлургия и функциональные покрытия. 2019. Т. 4. С. 55–67. https://doi.org/10.17073/1997-308X-2019-4-55-67
  35. Frese N., Mitchell S.T., Bowers A. et al. Diamond-like carbon nanofoam from low-temperature hydrothermal carbonization of a sucrose/naphthalene precursor solution // C Journal of Carbon Research. 2017. V. 3. № 3. P. 23. https://doi.org/10.3390/c3030023
  36. Lim D. G., Kim K. H., Kang E. et al. Comprehensive evaluation of carboxylated nanodiamond as a topical drug delivery system // International Journal of Nanomedicine. 2016. V. 11. P. 2381–2395. https://doi.org/10.2147/IJN.S104859
  37. Thomas A., Parvathy M.S., Jinesh K.B. Synthesis of nanodiamonds using liquid-phase laser ablation of graphene and its application in resistive random access memory // Carbon Trends. 2021. V. 3. P. 100023. https://doi.org/10.1016/j.cartre.2020.100023
  38. Petit T., Arnault J.C., Girard H. A. et al. Early stages of surface graphitization on nanodiamond probed by x-ray photoelectron spectroscopy // Physical Review B – Condensed Matter and Materials Physics. 2011. V. 84. № 23. P. 233407. https://doi.org/10.1103/PhysRevB.84.233407
  39. Lan G., Qiu Y., Fan J. et al. Defective graphene@diamond hybrid nanocarbon material as an effective and stable metal-free catalyst for acetylene hydrochlorination // Chemical Communications. 2019. V. 55. P. 1430–1433. https://doi.org/10.1039/C8CC09361J
  40. Testolin A., Cattaneo S., Wang W. et al. Cyclic voltammetry characterization of Au, Pd, and AuPd nanoparticles supported on different carbon nanofibers // Surfaces. 2019. V. 2. № 1. P. 205–215 https://doi.org/10.3390/surfaces2010016
  41. Жуков А.Н., Гареева Ф.Р., Алексенский А.Е. Комплексное исследование электроповерхностных свойств агломератов детонационного наноалмаза в водных растворах КСl // Коллоидный журнал. 2012. Т. 74. № 4. C. 483–491.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. X-ray radiographs of detonation nanodiamond powders.

下载 (124KB)
3. Fig. 2. Relative content of some elements on the surface of DHA particles.

下载 (77KB)
4. Fig. 3. Infrared absorption spectrum of DHA powders with base line subtraction and fitting to the maximum in the region

下载 (140KB)
5. Fig. 4. Raman spectrum of DHA powders.

下载 (120KB)
6. Fig. 5. X-ray photoelectron spectra of C1s of DHA (a) and DHA-K (b) powders.

下载 (101KB)
7. Fig. 6. X-ray photoelectron spectra of C1s of DHA powders.

下载 (105KB)
8. Fig. 7. X-ray photoelectron spectra of O1s of DHA powders.

下载 (100KB)
9. Fig. 8. Dependence of electrophoretic mobility (Ue) and electrokinetic potential (ζS) of hydrosol particles of different DHA samples on pH 10-3 M sodium chloride solution.

下载 (224KB)
10. Fig. 9. Dependence of optical density of aqueous detonation diamond sols on pH 10-3 M sodium chloride solution for 15 min of observation.

下载 (185KB)
11. Fig. 10. Dependence of the average size of DHA particles determined from the scattered light intensity size distributions on the pH of 10-3 M sodium chloride solution for 20 minutes of observation.

下载 (121KB)
12. Fig. 11: Dependence of optical density of DHA hydrosol on observation time at different concentrations of sodium chloride solutions and natural pH value.

下载 (109KB)
13. Fig. 12. Dependence of optical density of DHA-K hydrosol on observation time at different concentrations of sodium chloride solutions and natural pH value.

下载 (110KB)
14. Fig. 13. Dependence of optical density of DHA-TA hydrosol on observation time at different concentrations of sodium chloride solutions and natural pH value.

下载 (94KB)
15. Fig. 14. Dependence of the average particle size dI on the concentration of NaCl solutions at natural pH value. Numerical values at dots are the fraction (%) of light intensity scattered by particles of a given size (given for the case of bimodal distribution).

下载 (172KB)
16. Fig. 15: Dependence of electrophoretic mobility (Ue) and electrokinetic potential (ζS) of hydrosol particles of different DHA samples on the concentration of sodium chloride solutions at natural pH value.

下载 (114KB)
17. Tabl. 1.

下载 (40KB)
18. Tabl. 2.

下载 (18KB)
19. Tabl. 3.

下载 (15KB)

版权所有 © Russian Academy of Sciences, 2025